zepid

View on PyPIReverse Dependencies (0)

0.9.1 zepid-0.9.1-py2.py3-none-any.whl

Wheel Details

Project: zepid
Version: 0.9.1
Filename: zepid-0.9.1-py2.py3-none-any.whl
Download: [link]
Size: 555756
MD5: 241fcb5fe7eb51aad20fafc06678eaff
SHA256: c38f6a35a697d6b25d412857bad65342cc0275ab0b8722846976c3fa68d00940
Uploaded: 2022-10-23 20:07:16 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: zepid
Version: 0.9.1
Summary: Tool package for epidemiologic analyses
Author: Paul Zivich
Author-Email: zepidpy[at]gmail.com
Home-Page: https://github.com/pzivich/zepid
License: MIT
Keywords: epidemiology inverse-probability-weights risk-ratio g-computation g-formula IPW AIPW TMLE
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Requires-Dist: pandas (>=0.18)
Requires-Dist: numpy
Requires-Dist: statsmodels (>=0.7.0)
Requires-Dist: matplotlib (>=2.0)
Requires-Dist: scipy
Requires-Dist: tabulate
Requires-Dist: scikit-learn
Requires-Dist: patsy
Requires-Dist: networkx; extra == "directedacyclicgraph"
Provides-Extra: directedacyclicgraph
Description-Content-Type: text/markdown
License-File: LICENSE.txt
[Description omitted; length: 5149 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.36.2)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
zepid/__init__.py sha256=nn0QE9RgjTj1-kLZ9t4cXp0LO1_W2zpk5Tm0b4vjU7g 2782
zepid/base.py sha256=k9tEWN1BMhDHC8OsUj8awYiu7BOmD8KE_uOTJrkVM3k 84052
zepid/version.py sha256=pF8TnH2QJF8nfDmcD7oPTrAOnioy05dV4YmYDzkT5Es 22
zepid/calc/__init__.py sha256=g5cLaQjau3brlZCy3B74GrLOyNla98olf16PhlpZYfo 564
zepid/calc/utils.py sha256=vZl52VB4drySTyDWkeva-NLnxpg05-UF9_jGNs9AFSk 45831
zepid/causal/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
zepid/causal/utils.py sha256=oVp2i5t-qM0hGn5jILmpt7vkkeyGHee9F3NVM9tWKng 34840
zepid/causal/causalgraph/__init__.py sha256=Dd2aiHuzrQZOAR-PjPGm9HN3N0tPKyujVlsMMrnA1-4 37
zepid/causal/causalgraph/dag.py sha256=ZHln53eIsCrZXzY54dUoDUPXK2KABFyXjyCTJVR4OV0 11025
zepid/causal/doublyrobust/AIPW.py sha256=6gPp85549OnScleZlnF6pTBJkKgjqSAOBy4lB1Gh8TQ 34245
zepid/causal/doublyrobust/TMLE.py sha256=plI4mU_8agaJS8lcPblnTXWAvnrI36jmMeE6chmhGeE 65609
zepid/causal/doublyrobust/__init__.py sha256=APftTUMLBZmU5LhArI37EvED_swZ6D5UaQ9zSrLY1Cc 240
zepid/causal/doublyrobust/crossfit.py sha256=ktdw80SYiC0XWPUiWYDG3yYxbujmWuOAaE8ekGwYhQc 94938
zepid/causal/doublyrobust/utils.py sha256=P3kwFdWARrOTeCd2YxfqopYwWGplDVoemkTdlWq4Dso 434
zepid/causal/generalize/__init__.py sha256=jIAv7fcKidAD1joPJ0HJwkapHHhrwRUHlz9XLup6y4U 55
zepid/causal/generalize/estimators.py sha256=FhtPszu8IOEXsd5Jl5_j4Cvzi3ILfDRB0rdEp9LWiAk 40376
zepid/causal/gformula/TimeFixed.py sha256=LjSzpzwRPP6suNiU9EXi4xndiQyOOMCxK4ZsgX-cAsc 34494
zepid/causal/gformula/TimeVary.py sha256=6n64LIyLPxDeJ68WqEjiojoWOuK0uZ5ya0bDZBd-HiU 39064
zepid/causal/gformula/__init__.py sha256=ECQjpWpYlL_HNxOQH44gGYnqj-ito4SlbDm7YtL7nm4 123
zepid/causal/ipw/IPCW.py sha256=lOMUUg0-tjLJ9Ndzp2qJlQ7Op1FHEufCr-E35oC0OGc 10698
zepid/causal/ipw/IPMW.py sha256=NF--Ccx6R1h2qsznIpoxVX5ZHCgMP4zofxKxOfHeCBE 13778
zepid/causal/ipw/IPTW.py sha256=N8WwBNfP1aIfDtyHjFC-9eHAeWbF1Ep22KYjwGUsIzI 40910
zepid/causal/ipw/__init__.py sha256=-pX-zarluMRT9Q7aStlMgf-ldoGM2adr0EsQbMMJ4-g 85
zepid/causal/snm/__init__.py sha256=6PEOSON4KF5j8XUk8rlbFpi9HjILvbHGtf_ScGumy60 41
zepid/causal/snm/g_estimation.py sha256=0jC_beDx-0WCLRtBfSjPDF7FFRZw-WZ7MpBf4GYt-pM 24834
zepid/datasets/__init__.py sha256=EUEJFcXpSDTC_mNIbwxJUJZik3ag8r0meowLakfm-aE 19211
zepid/datasets/binge.dat sha256=M8teUPqVNLkbXeMWBSTEhAkXMQPdTXjq6CZrFmbj0Aw 73744
zepid/datasets/case_control.dat sha256=ZWyMwO4_pMZ6wWEa_t_GVY95eavu7VgbVBrd_x6Zqzg 262
zepid/datasets/data.dat sha256=qw8ocdrzEsGwgdVGfeXT5WIU4dfoi2uhAmJvmM_K0XE 1286954
zepid/datasets/ewing.dat sha256=m_GJ21hpPL1mCgmmmMeY9r_SQfKQhjQvKQ5FpQvz7bw 813
zepid/datasets/generalize_conf.dat sha256=_jX-RD_QPt1qo7YdVKBlmCS1MZt4sTn9xHlT2ecbLfE 79800
zepid/datasets/generalize_rct.dat sha256=dmMXxfFoH6o9dULuhg29sp7Lfcurgz9wq61MegXwiZs 79800
zepid/datasets/gvhd.dat sha256=uR0RLjTJCBYASn7JbHPaZSnAgWAyj3IBgOPxImSEPk0 5453
zepid/datasets/leukemia.dat sha256=BvdHfc5KOngcjLFZd76Ks9xGu7rv2DXuWMAPLcZFDwo 582
zepid/datasets/longitudinal.dat sha256=iQCMjuWEc5DOLJt7FzKrOtnfFaWn5DIs9kGX7FIGDEk 86333
zepid/datasets/monotone.dat sha256=i-b1d70W54ecu8_SuGeCTKsOk71dJmxbIjgupI8h8iQ 63937
zepid/datasets/sciatica.dat sha256=3U-OjLYXz6DV0hrTxmQEY8PwVruD8Ggu4ail0Z7nDXA 334799
zepid/datasets/zivich_breskin_sim.csv sha256=EbihStH7At-Ay2hMed2QBO7naJmOScjZmD_13XFryHg 137409
zepid/graphics/__init__.py sha256=LgKEE8v2csIEMNy9oNeNRtVN7vUkLnVDQ1lJE2Td3Hc 303
zepid/graphics/graphics.py sha256=hOZrQ_3jy8o8V_1sFV5cArIdaM662cNOlqZ5dL_dV_c 38866
zepid/sensitivity_analysis/Simple.py sha256=T6Y1ZjWe6Vl4aNOFq6Zn9NzmuVM_UT2EgAQ5Y23kEGo 8603
zepid/sensitivity_analysis/__init__.py sha256=EKkH82erZdL1l1El9lbLU2Tk_gcrwVOdr-ftzZ0xtUw 494
zepid/sensitivity_analysis/distributions.py sha256=CpEcwRktB0eOUgfMbwoONISevFfntUIQ5pBPTK03i6U 2379
zepid/superlearner/__init__.py sha256=KaM9LpumfgTmVu9xCMsr2q4-hVVt9ESd-QBfyvDvnVc 94
zepid/superlearner/estimators.py sha256=UEQbpHblNbAnSnlVMzVjM5h2q5koyv6zvdcVhoSvumc 16125
zepid/superlearner/stackers.py sha256=Ls6KMkw-YQUnADv0BFD3g_-sGd7qFQoej2h-tyUDayM 16313
zepid-0.9.1.dist-info/LICENSE.txt sha256=s4tLfGyzBdrZKsO5bGDJrkEXSrtpxFfmhl-igSDCDcw 1066
zepid-0.9.1.dist-info/METADATA sha256=6Zzp1OiC6815wu3IhufC3oMDXGiuEtKuMqQ3sGXJeN4 6104
zepid-0.9.1.dist-info/WHEEL sha256=Z-nyYpwrcSqxfdux5Mbn_DQ525iP7J2DG3JgGvOYyTQ 110
zepid-0.9.1.dist-info/top_level.txt sha256=TrNJkpO1FtnXk_2hYiEcDQnOKiTSq0aLXBmwnu8VZlM 6
zepid-0.9.1.dist-info/RECORD

top_level.txt

zepid