yogo

View on PyPIReverse Dependencies (0)

1.0.0 yogo-1.0.0-py3-none-any.whl

Wheel Details

Project: yogo
Version: 1.0.0
Filename: yogo-1.0.0-py3-none-any.whl
Download: [link]
Size: 61049
MD5: 25acd2d4f812033afedb633c4b359eb3
SHA256: 84c9eab51081016869455b7707811539217a9da505fa84766c5f82dfdf92ec7a
Uploaded: 2024-06-23 18:11:46 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: yogo
Version: 1.0.0
Summary: The "you only glance once" object detection model
Author-Email: Axel Jacobsen <axelnj44[at]gmail.com>, Paul Lebel <paul.lebel[at]czbiohub.org>, Ilakkiyan Jeyakumar <ilakkiyan.jeyakumar[at]czbiohub.org>
Project-Url: repository, https://github.com/czbiohub-sf/yogo
License: BSD 3-Clause License Copyright (c) 2023, Chan-Zuckerberg Biohub All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Keywords: object detection,YOGO,YOLO,deep learning,PyTorch
Requires-Python: <3.11,>=3.9
Requires-Dist: zarr (==2.17)
Requires-Dist: torch (<=2.1.0,>=1.13.1)
Requires-Dist: torchmetrics[detection] (>=0.11.4)
Requires-Dist: torchvision (>=0.14.1)
Requires-Dist: ruamel.yaml (==0.17.21)
Requires-Dist: tqdm (<5.0.0,>=4.61.2)
Requires-Dist: wandb (>=0.14.2)
Requires-Dist: matplotlib (<4.0.0,>=3.4.2)
Requires-Dist: MonkeyType (==23.3.0)
Requires-Dist: onnx (>=1.14.0)
Requires-Dist: onnxruntime (>=1.14.1)
Requires-Dist: onnx-simplifier (>=0.4.17)
Requires-Dist: openvino-dev (==2023.0.2)
Requires-Dist: pytest (<8.0.0,>=7.4.3); extra == "dev"
Requires-Dist: ruff (>=0.4.4); extra == "dev"
Requires-Dist: black (>=24.4.2); extra == "dev"
Requires-Dist: mypy (>=1.10.0); extra == "dev"
Provides-Extra: dev
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 2641 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (70.1.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
yogo/__init__.py sha256=Gz1wM4W9IuynN2w2xxYEoePIpBXIvVPANLxGChqixc0 126
yogo/__main__.py sha256=53pc0VKTKHAZ42cAGLAGdqwkZGiBf_-si-yPeTBUKCw 1014
yogo/infer.py sha256=FtxbzhFS1Q3OhksiLTasL4_xip-tPK8rRXDX-ZAo3os 15295
yogo/metrics.py sha256=kuaKaqjaB4afAWpRBCYK69VrjX_jvtDtbp8YDPuotKc 8180
yogo/model.py sha256=MD5RHsKpFQtxDJy1qBRPfyNJ0IVEFSF4sBGzUf7Z61k 11223
yogo/model_defns.py sha256=qU246qJMt_Utfhq5GRCK57x43tCSUvXCtd7WkT74oDU 15581
yogo/train.py sha256=U9WtDbYFE7AYWpnHDjHW55e6D5SpWj-r9wJUolI93vU 22149
yogo/yogo_loss.py sha256=ANsp-hnVlq9KuGZaQn3Dia6YSWLt81Or6_xop_5u_3Q 3957
yogo/data/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
yogo/data/blobgen.py sha256=6uIeg_irkW4qq7-_IU0UmPqPgBKlUmkFSY78pRexvpo 9040
yogo/data/data_transforms.py sha256=b2kuOyakrbIUvYXFA1uXV8k37LWySw439IQ0OxJtqAg 3120
yogo/data/dataset_definition_file.py sha256=AmewInxhEpO-36vWAz7uQXXJYoN3ig71mtX1ZUVAcjY 18606
yogo/data/image_path_dataset.py sha256=FNr55EE_-xjytQ2IqCROgZG9tJEHQ1K2OgxYUKS3G3E 5046
yogo/data/split_fractions.py sha256=wRSasotiX2VdmUls3s3KBnekRwvDCsm7LnZKfp8ML4E 4152
yogo/data/utils.py sha256=Qj9mSoOYrS1XKJA5DSAggHYVKuR5DiaPP-daqWYKvuU 4595
yogo/data/yogo_dataloader.py sha256=QYae4SpxaWZQQeU8Hmt-Gwv4fp5EiXdsOJ75SgXXkRs 10478
yogo/data/yogo_dataset.py sha256=FNZ4rzPBd-7aWEas15ME0F9vv2YxMJ1BVQKH7wxaff8 10267
yogo/utils/__init__.py sha256=O2NiFz37ddyEauv3RIEsiluO7uGAEqegWiqmOstgNWE 579
yogo/utils/argparsers.py sha256=R3IA_fut6HSe03KEtJQ7w_tJdrKgupy451B5psJIc60 14297
yogo/utils/cluster_anchors.py sha256=-stm-kRxPg-gFx6Yuk5fy6P_I0aFeC88IeMfkFDBZY4 4387
yogo/utils/default_hyperparams.py sha256=emyxvVrDEsnv2DVw_Z23PPmiBuEKgp3e6cb5t0D-FeM 301
yogo/utils/export_model.py sha256=oVD_TD756cq1Ed68drHfWVkQIzbOTrlAi-9lZmjFJ0c 4361
yogo/utils/prediction_formatting.py sha256=KjP7QK-SlvnEtvOnoIooU1CVGDQopv8mUykTICQPNII 14444
yogo/utils/test_model.py sha256=JxYhRVPXvuD22qQed6CDD34GzJPKOK0VBmSRpuqrNRA 3218
yogo/utils/utils.py sha256=T8z1N6Ok2fT4rmDOQbJ_l6s1M2wqJ-N3HaAxD1kSTDw 8109
yogo-1.0.0.dist-info/LICENSE sha256=7PUzcUsDq9i1QE_a-iWxhVRUIK-z3pzSGngpUFBFdfU 1522
yogo-1.0.0.dist-info/METADATA sha256=IOZXiBygUN_fHNAZr7r7rNNPd9r_tcPMdyPQw6iumWc 5551
yogo-1.0.0.dist-info/WHEEL sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A 91
yogo-1.0.0.dist-info/entry_points.txt sha256=IrjqFLCPsTRtTLK58n9oAXvUCUYvKYnjxnVmt1TfYxM 44
yogo-1.0.0.dist-info/top_level.txt sha256=dNavvwgKiEyUvR2Ub0zS0kCyEUZZFywbU7P92J-j8fU 5
yogo-1.0.0.dist-info/RECORD

top_level.txt

yogo

entry_points.txt

yogo = yogo.__main__:main