veta

View on PyPIReverse Dependencies (0)

0.7.7 veta-0.7.7-py3-none-any.whl

Wheel Details

Project: veta
Version: 0.7.7
Filename: veta-0.7.7-py3-none-any.whl
Download: [link]
Size: 4329324
MD5: fb0f8c3812f58723ca9cb9c4e11f72cf
SHA256: 4cfcafc14c614ca2e30337aebe9738666c96ae0445b0fd48867ac6a2526f0d5c
Uploaded: 2023-06-04 21:00:08 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: veta
Version: 0.7.7
Summary: Simple variant prediction evaluation
Author-Email: Pedro Barbosa <psbpedrobarbosa[at]gmail.com>
Project-Url: homepage, https://github.com/PedroBarbosa/VETA
Project-Url: repository, https://github.com/PedroBarbosa/VETA
Project-Url: documentation, https://github.com/PedroBarbosa/VETA
License: https://opensource.org/licenses/GPL-3.0
Requires-Python: ~=3.8
Requires-Dist: matplotlib (==3.5.1)
Requires-Dist: numpy (==1.23.5)
Requires-Dist: pandas (==1.4.2)
Requires-Dist: seaborn (==0.11.2)
Requires-Dist: cyvcf2 (==0.30.15)
Requires-Dist: scikit-learn (==1.0.2)
Requires-Dist: imbalanced-learn (==0.9.0)
Requires-Dist: hgvs (==1.5.2)
Requires-Dist: fastcluster (==1.2.6)
Requires-Dist: statannotations (==0.4.4)
Requires-Dist: gplearn (==0.4.1)
Requires-Dist: sklearn-pandas (==2.2.0)
Requires-Dist: dtreeviz (==1.3.5)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 34638 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.40.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
base.py sha256=SGipiwiJ5dzcsoyo809HbGHBbUbhQRSLDlW-46o6hmw 24480
benchmark.py sha256=pdtkmFnDClH_OmRVE7NimTlaNsT253JvEgoH-Qx_Sdc 22309
interrogate.py sha256=8Sbok_8CYUjg2FLUQqW6Tx-O-arVFWq-_qA5i0i6RzU 14407
veta.py sha256=66OUMz3KwfGqB10NOrT9nKU3_zOJ2uTh4MYAARCvgYU 12813
config/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
config/tools_config.txt sha256=jRmsbYxWjdEzKWkfMxspnvuD0Jwcy0OZT0PsgoCCMUM 1381
config/example_imgs/.gitkeep sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
config/example_imgs/benchmark_af.png sha256=NPSe9dWB_JvUpb66tjKZBbMLh92_mPK06LrLchMdF-Y 41469
config/example_imgs/benchmark_dist.png sha256=5fAFgmJwHEVIfFytVzsNkA1-v-bd-QV_S_lFuhApp8Q 176304
config/example_imgs/benchmark_performance.png sha256=jjHllw59mxPoUTNRJtPZx2RBPKAVzBw23PLDbYqw9IU 530128
config/example_imgs/benchmark_thresholds.png sha256=OxJE2MaD56RjpQ8rgxNQXObdMmAtWBFu-j5gcBLeCzo 105415
config/example_imgs/heatmap.png sha256=fQjFfK8FYEuW3UwFGifSUxJoxeSR7wjQOllb_fPEBLU 187077
config/example_imgs/inspect_ratios.png sha256=FVXJnkIuTJ664wLhft1zYK9r78bx_1_eX5HHRCTly1o 236867
config/example_imgs/inspect_ratios2.png sha256=K-wdDLgQTsHqIaw7gWDtbfMXGz2O3l8xlnxWe6Q20F4 149613
config/example_imgs/logo.png sha256=OrlCk69k1VUUXOh1bcY_wUaWad3dDV6vYHrsfN7C7wg 51272
config/example_imgs/ml_fi.png sha256=djmIZMHwF1hmeDBvfBQcsgq244gjlbPcnc7JgZyBUVA 175417
config/example_imgs/ml_performance.png sha256=QLIE3rM4R04SQq9UPxZCTazqkbTk6FeUqi8hWVvQM7g 253954
config/example_imgs/pearson_corr.png sha256=W3W4Er6Hn5PD6iRob0bhFJge8lxU26-WlQ5dhYIkrhc 183865
config/example_imgs/per_bin_score.png sha256=G1WGcDSVKBVcLjo2jeeUNrXKKSfaiC0TeuEbSKX-234 391054
config/example_imgs/per_bin_score_split_ss.png sha256=ZiEEvc-fNQrmXI2KURT0FwaEXIADan5myFRB4-xG7xA 510397
config/example_imgs/roc_analysis.png sha256=SEhOj6uOqLlPgYFzi2aRwzisw_9smUgWR-fWyZ5ANW8 1012850
config/example_imgs/roc_curves.png sha256=I_9cNlh7z1gIn4jtOi8Zux1l8Z0d_4zd_sopTVumP3I 642538
plots/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
plots/plots_benchmark_mode.py sha256=D3XieRtML3uy_1cMmolnreVj2Cu08u8QVO_Ex2ixdGk 23298
plots/plots_interrogate_mode.py sha256=4FEcT9SfLx1C0SIPbRXzsnxH5UPrZVDrRD5utECMXts 8896
plots/plots_intronic_analysis.py sha256=2jZfsNIu8l1jyVKTLSEUTmA4kBHR1K0ukVyknKBkyTA 15452
plots/plots_machine_learning.py sha256=5GtIYpmWdz8HvHIsNba0zHKt9daVhaWXBP7ytWGmgP0 6557
plots/plots_threshold_analysis.py sha256=N31FpRZ2lLW5CQ2yl0PZK9d1T6Bdv9cTpTDX3sruE6Q 5079
plots/plots_utils.py sha256=e_tlhPpJBaYtal2eUHbErJrEqeH7uL-FiicZVnSKjS8 822
predictions/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
predictions/apply.py sha256=ms-Oe6bH-fgPFbK8lqZKMB_P1PWqKilgQ7ssJIyaaTs 1001
predictions/filters.py sha256=b3Sm7rse958-oqpuhjifstnuxECgSAsYb9tZCwbUvNc 9481
predictions/introns.py sha256=i5H0-2gE32FVFTEUR2dXi7gUi-Duxru-NW-6eJ3fFhg 16825
predictions/metapredictions.py sha256=KfVMv_BUmQJg99OpkcRdclXMFGp889EmkO4ILo3Ux1I 21143
predictions/metrics.py sha256=Jw3hV2qxuNhZBnZyUiVYdHN0TJ7N6i2ZepR8D8g0rJY 7359
predictions/thresholds.py sha256=CG7pB9tR16gSySUE7ckRK6abpPKGpMvs8SyGEmKxgBk 15342
predictions/utils_classifiers.py sha256=XEGKjArJzCiUwkEMjy8_0OVs7QoWuQ7QQPtc6FSvwjk 11304
preprocessing/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
preprocessing/clinvar.py sha256=oX-un6kB5DVjELxyCLNXLaAPEU_1KjCE3524oS1mMlE 4279
preprocessing/location.py sha256=L5m1yhChKfk7PTCAOUelnZXVL8_VQaik_YW3u6UfU4I 6443
preprocessing/osutils.py sha256=wkZ68oVatVeRIL8YhlCT88QpRSICIRDFOAaUKcXvwuo 3400
preprocessing/tables.py sha256=Yaj8OCC1VGy3UV7TLI0y6hXmHF3T1veP2O7m3PLKUHQ 5996
preprocessing/utils_tools.py sha256=dT_Dtyh94Xn9Wb7Xn3svlCJccz_n7GXs6hq5BI_g6xM 22802
preprocessing/vcf.py sha256=3ZfYfptEUjDJkkfVJl_qR4aYKXsaQZpXoSw_6yI9PWY 15511
veta-0.7.7.dist-info/LICENSE sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY 35149
veta-0.7.7.dist-info/METADATA sha256=nqT-tjPm45JzZ0l6KWeEGI1ZYVWT7IoY-skNdA865wc 35573
veta-0.7.7.dist-info/WHEEL sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 92
veta-0.7.7.dist-info/entry_points.txt sha256=vfioSPzqZWjpY8ebTvV7I8jCeMbrE_MqZbQx4Z4c6Go 35
veta-0.7.7.dist-info/top_level.txt sha256=5pcpV7-oAzyG1uKq8HdoNJIlXoGrb3Ng1aazRPt-NyU 80
veta-0.7.7.dist-info/RECORD

top_level.txt

__init__
base
benchmark
config
interrogate
plots
predictions
preprocessing
veta

entry_points.txt

veta = veta:main