tsml

View on PyPIReverse Dependencies (1)

0.6.1 tsml-0.6.1-py3-none-any.whl

Wheel Details

Project: tsml
Version: 0.6.1
Filename: tsml-0.6.1-py3-none-any.whl
Download: [link]
Size: 305395
MD5: ebc833cb637f51922398f2553972d312
SHA256: e57afc9736f8456d8457a8095b8e99c0607c34602221851c7f1bb447b21e04be
Uploaded: 2025-01-11 21:29:58 +0000

dist-info

METADATA

Metadata-Version: 2.2
Name: tsml
Version: 0.6.1
Summary: A development sandbox for time series machine learning algorithms.
Author-Email: Matthew Middlehurst <m.b.middlehurst[at]soton.ac.uk>
Maintainer-Email: Matthew Middlehurst <m.b.middlehurst[at]soton.ac.uk>
Project-Url: homepage, https://www.timeseriesclassification.com/
Project-Url: repository, https://github.com/time-series-machine-learning/tsml-py/
License: BSD 3-Clause License Copyright (c) The Time Series Machine Learning (tsml) developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Keywords: data-science,machine-learning,scikit-learn,time-series,time-series-classification,time-series-regression,time-series-clustering
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Topic :: Scientific/Engineering
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: <3.13,>=3.9
Requires-Dist: numba (>=0.55.0)
Requires-Dist: numpy (>=1.21.0)
Requires-Dist: scipy (>=1.9.0)
Requires-Dist: pandas (>=1.5.3)
Requires-Dist: scikit-learn (>=1.0.0)
Requires-Dist: packaging (>=20.0)
Requires-Dist: grailts; extra == "all-extras"
Requires-Dist: statsmodels (>=0.12.1); extra == "all-extras"
Requires-Dist: wildboar; extra == "all-extras"
Requires-Dist: mrsqm (>=0.0.7); (platform_system == "Linux" and python_version < "3.12") and extra == "unstable-extras"
Requires-Dist: mrseql (<0.1.0,>=0.0.4); (platform_system == "Linux" and python_version < "3.12") and extra == "unstable-extras"
Requires-Dist: pre-commit; extra == "dev"
Requires-Dist: pytest; extra == "dev"
Requires-Dist: pytest-randomly; extra == "dev"
Requires-Dist: pytest-timeout; extra == "dev"
Requires-Dist: pytest-xdist[psutil]; extra == "dev"
Requires-Dist: pytest-cov; extra == "dev"
Requires-Dist: pytest-rerunfailures; extra == "dev"
Provides-Extra: all-extras
Provides-Extra: unstable-extras
Provides-Extra: dev
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 1880 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.8.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
tsml/__init__.py sha256=ShVDOOpX1DfygcRUHGYwI4rve7Lm0rwnR6tfhGzBR0o 35
tsml/base.py sha256=aRd_Q-8FnoxJTWn5PBtI_Nu2mke7WGb-d6Ml0oFWsRk 11394
tsml/compose/__init__.py sha256=208j0dKhRRooipTc-u6PKYibbfMU9eSnHbwPYLHlt0w 218
tsml/compose/_channel_ensemble.py sha256=W3r_Q4i64ua3RdE6uEhVxfOaB0WmQA3XZ2S0AB57MfM 20402
tsml/compose/tests/__init__.py sha256=MvXcD2Di4I8cuynIN1XPewTCKyRsC73-wFdDce0akkY 34
tsml/compose/tests/test_channel_ensemble.py sha256=bP0RDcA3u8iK_u3Py87QsjHY79y5pF3kula2Vt5H6Pw 2686
tsml/datasets/__init__.py sha256=ocY-HZtl4m_M4SnsdW6wDlaLnA00Qf6TloexmW77a28 556
tsml/datasets/_data_io.py sha256=6Fvpq7WfieXStiLQJVOSk6wexR36L9L9m1w7lzzpi74 24903
tsml/datasets/EqualMinimalJapaneseVowels/EqualMinimalJapaneseVowels_TEST.ts sha256=ideZnKMRbZfEWCjkcJHnqDdgHbBhPJeYMJ-bMnQEJ2g 120661
tsml/datasets/EqualMinimalJapaneseVowels/EqualMinimalJapaneseVowels_TRAIN.ts sha256=ZFKLsnoMwyD9OuGSNb5BAFyiZ0PhgtRfa6Kr4_7Zk4Y 120799
tsml/datasets/MinimalChinatown/MinimalChinatown_TEST.ts sha256=WeLPIwchnaoTbX_NB9j7o0Klo8872okrD8-12ffx31E 3389
tsml/datasets/MinimalChinatown/MinimalChinatown_TRAIN.ts sha256=PYROUJgVZyPz4A47VlujDAKveuwhAuUbilRHb5uPeNA 3381
tsml/datasets/MinimalGasPrices/MinimalGasPrices_TEST.ts sha256=U9a6MjHdAs3VN0oI3Lz2AbsIU9UGy3GOrekryechb24 2709
tsml/datasets/MinimalGasPrices/MinimalGasPrices_TRAIN.ts sha256=eOtd2VCiNH20iYAh9GRqWr3qDm3bMZY1BWShQLZxwv8 2711
tsml/datasets/MinimalJapaneseVowels/MinimalJapaneseVowels_TEST.ts sha256=RCG85xSAevPZEnqObzHO6aj-tWre1hOghCvwKybFqVw 36247
tsml/datasets/MinimalJapaneseVowels/MinimalJapaneseVowels_TRAIN.ts sha256=r7pojNafe4-lx_TxlW6hBiohgIGxKLRbkVQq8c5g1aQ 38758
tsml/datasets/UnequalMinimalChinatown/UnequalMinimalChinatown_TEST.ts sha256=wDRp5WoDU-Tui0Hgo1iNyo39I8vQViQlk7ly-FJkMTo 3309
tsml/datasets/UnequalMinimalChinatown/UnequalMinimalChinatown_TRAIN.ts sha256=SBaL8MOpGRrSuYmiL-LwgirrLjhHCEvNcMQZzrKiAW4 3272
tsml/datasets/UnequalMinimalGasPrices/UnequalMinimalGasPrices_TEST.ts sha256=a-R5F2wIvNqKCLEc4yZpj8NABWPpIhMs-kmwTeGM5Pg 2697
tsml/datasets/UnequalMinimalGasPrices/UnequalMinimalGasPrices_TRAIN.ts sha256=xUQzIoHHrfG9wPLh1316ca9JIdTGBWlvk_Q27xxAuiM 2700
tsml/datasets/tests/__init__.py sha256=Llm1tV19LjHlHwY37WoEkjmWxgHAkAm-tZMPv3LGaQI 32
tsml/datasets/tests/_expected_data_io_output.py sha256=TVvdRVRqQx9bB67u2DMGgOVEgk5H_Hz60GErUatD24c 286318
tsml/datasets/tests/test_data_io.py sha256=OhCAeaWdC4Cj_ypCuvCEU_4Yo9gOh5PsUzN60_lX83o 2435
tsml/dictionary_based/__init__.py sha256=h2xa8OwpNYBjPP9_R7r4f7HM8pD7OzYH8HTtBjHZpGs 214
tsml/dictionary_based/_mrseql.py sha256=kQugNjW3oFo-dyUNSrdWQ68RmRWZ5OGik8NiBEIAGuY 6155
tsml/dictionary_based/_mrsqm.py sha256=CFDr53uTbvE6hZBfFkPJ4AxbIraMhwOmXQiC79Tcj-I 7698
tsml/distance_based/__init__.py sha256=Ji5Sz7_Uzua5NeF5GEGsdJ0xtHHxgnGNP4Id8yXdrNI 127
tsml/distance_based/_grail.py sha256=5xczVHoBzcmoxBoYyU_2KEbRvMADWiApnGMubT_VUEU 8228
tsml/dummy/__init__.py sha256=2EDkjQGohzvl6g2NY2cDr4B6q-WvltQzKoNY0dZl4CA 185
tsml/dummy/_dummy.py sha256=BnnkhsCq-BjnFIRIdQgy15bDpgFD01gdBK6AZtBI0Fk 17962
tsml/feature_based/__init__.py sha256=x68QmvNhEPRqpXLj1Yi3u3e7w-J2yFEb_8n9BKGCGlU 158
tsml/feature_based/_fpca.py sha256=kELT9BuAkvmM-AFIHEM9Vn357JTxrImro6eF0De6Phw 13669
tsml/interval_based/__init__.py sha256=W5rJUiEHRld_ax_k1DU50bcuX_p7nhhH-F7Pje2AQn8 297
tsml/interval_based/_interval_pipelines.py sha256=wQhU6UlMwoIhYJEU4VgWTsvcd7KAb9Do0CQ589tdMUs 30571
tsml/interval_based/tests/__init__.py sha256=OpaZmRPTJ9lFEB4cD24YSC--fiQQB3GaRXyE6rW79BE 47
tsml/interval_based/tests/test_interval_pipelines.py sha256=bkYUr0pvHa5kTyMTEor8TNUIhYxyZWZKSkcWn3N_QZ8 1085
tsml/shapelet_based/__init__.py sha256=YTcw3A7J70XHCfddvCBcPKJQLGI_GzyFm0hi79olrf8 236
tsml/shapelet_based/_rsf.py sha256=ngpvNZuVG3hSmMTwAVdoJVV1mEk3wVAjDwLJ6TjkVUA 11092
tsml/tests/__init__.py sha256=k0aeStQ99l_OBldFqxFFFM7Q6-5A4V6CxWqJLRBDThs 20
tsml/tests/test_all_estimators.py sha256=otzmzisXi6Yu1mgHU0J4W7X3JrUl9ridqSbaShGfQSM 350
tsml/tests/test_estimator_checks.py sha256=69IAr-LgXDHKGMzBQAV1uh4Tty18s2v7GS2stdx93dU 9548
tsml/tests/test_estimators_sklearn.py sha256=6DtUOwxoxHiJlQCvd8b-NzMS76tfYtAj6S-n64-1gF8 47606
tsml/tests/test_interface.py sha256=ojEnG_3hQYPcswyg12ISUJTd_CRHJQnxgAXMwLyQz0g 2445
tsml/transformations/__init__.py sha256=XhoTABtSYV7LH7irmDyZ7DzEBWbW0bNZDKMyRPukqQs 968
tsml/transformations/_acf.py sha256=VDOAotDhaKXbV9BQ_qI1uqsCS-2MnlBorFHAD2eYloY 4758
tsml/transformations/_ar_coefficient.py sha256=43ZsKuEqVM3iJnm39TRzsIt29gErYG1xlmEtOP9bupg 3809
tsml/transformations/_fpca.py sha256=V_HH_SqXpERevuZL9Nq66rzOVhuExe872IqBteNxXwA 6800
tsml/transformations/_function_transformer.py sha256=b7mIuUxGsvL4WPf_GE8ABf49JzjEJDjanGNQUQpaPWM 3192
tsml/transformations/_interval_extraction.py sha256=kovpkMeLLa-yQRfZ-r589ao8XbPc89sA16bLK8iVXz8 40524
tsml/transformations/_periodogram.py sha256=ofNzoVLVxITxvW4sC9sSzETQ-MiRHE-Hprli0h238Mc 3991
tsml/transformations/_summary_features.py sha256=v2la-5aDF-wmx_3YYod84TJQRnyuaJrw4lhU3hz5D8g 3682
tsml/transformations/_transform_concatenator.py sha256=ByHl13WY_-zAXUoRmaSey4oBOTpxoHIu71tG2Qyaa2g 4440
tsml/transformations/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsml/transformations/tests/test_function_transformer.py sha256=S01Rt9vNSVrimiPFI2XnJV5C-DhroYztcJHtDGnkRRM 642
tsml/transformations/tests/test_interval_extraction.py sha256=OFdfvct_RaoD-egt0_Bgk94uiaIFUxAqTH7swrTxcEg 1756
tsml/transformations/tests/test_periodogram.py sha256=1HMTz2fbi8g8WhSoBocnCombwz-qOpq5MAtdKr3zTy8 764
tsml/transformations/tests/test_transform_concatenator.py sha256=PIgpeQrj9xyB1GbHdqHCLeEIRSmjNr3WUzgxuOYxjgc 1050
tsml/utils/__init__.py sha256=UqEOVgtBdSVHcDggXa1iqHmru9K7vAd1fo5wi6LlGZ4 22
tsml/utils/_tags.py sha256=HSn38Rx_rZ3rGzib7vZUk5gUh5QLakGrAJ9kZ4BqXY4 2175
tsml/utils/discovery.py sha256=CYsILOmUJnsi27prFdvMlfOPyGpGDAiGD3EQuVSa8V8 4256
tsml/utils/testing.py sha256=hNJQPPohMiVRGwN_BlishuM3OaT4opvpdRvC9ZQ98PM 10191
tsml/utils/validation.py sha256=4rJSqrDQIFOAMiyGINEIUY-kmk3RrVZGBnb8g6OW1cU 23099
tsml/utils/numba_functions/__init__.py sha256=UnXayQy-z2M8XwTqHISwXpatUOtZh8vGtHS0UnkAeJI 31
tsml/utils/numba_functions/general.py sha256=pzaZO08TBLKv9P-uSKu5tx0Weyp0dUh4dkpBd-NuAfw 15788
tsml/utils/numba_functions/stats.py sha256=Ea88C8ChE94EaPIdVfyu4Wf6qFYDclYs9bFTgV1Bnlg 22906
tsml-0.6.1.dist-info/LICENSE sha256=A0ilu9mnPKn-wdtKELTcepLgObPWurYoWnk6Y7JOxqQ 1553
tsml-0.6.1.dist-info/METADATA sha256=_10nVXlGbXB-w7X5SObaBQlPkCRiG-uEmAShwnPJX4k 5837
tsml-0.6.1.dist-info/WHEEL sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8 91
tsml-0.6.1.dist-info/top_level.txt sha256=v7twBWTkLkw9ou23S52I9O5xfb6m_B1xU-VMYrv37WU 5
tsml-0.6.1.dist-info/RECORD

top_level.txt

tsml