tsad

View on PyPIReverse Dependencies (0)

0.19.4 tsad-0.19.4-py3-none-any.whl

Wheel Details

Project: tsad
Version: 0.19.4
Filename: tsad-0.19.4-py3-none-any.whl
Download: [link]
Size: 81200
MD5: f3c9babada5136d45934c75a603b917b
SHA256: 69feefa56fe6cd0457d1ed8c932a7aebe043770125a7c5a9e6caf058880c5e4d
Uploaded: 2024-04-21 14:12:59 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: tsad
Version: 0.19.4
Summary: Time Series Analysis for Simulation of Technological Processes
Author: Viacheslav Kozitsin, Oleg Berezin, Iurii Katser, Ivan Maximov
Author-Email: rfptk2525[at]yandex.ru
Home-Page: https://github.com/waico/tsad
License: GNU GPLv3
Requires-Python: >=3.10.0
Requires-Dist: ipykernel (==6.25.1)
Requires-Dist: ipython (==8.14.0)
Requires-Dist: matplotlib (==3.7.1)
Requires-Dist: missingno (==0.5.2)
Requires-Dist: numpy (==1.25.0)
Requires-Dist: pandas (==1.5.3)
Requires-Dist: plotly (==5.16.1)
Requires-Dist: plotly-resampler (==0.9.1)
Requires-Dist: pyarrow (==14.0.1)
Requires-Dist: scikit-learn (==1.1.2)
Requires-Dist: statsmodels (==0.14.1)
Requires-Dist: tsfel (==0.1.6)
Requires-Dist: tsflex (==0.3.0)
Requires-Dist: tsfresh (==0.20.1)
Requires-Dist: torch (==1.11.0)
Requires-Dist: xlrd (==2.0.1)
License-File: LICENSE
[Description omitted; length: 1250 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.43.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
tsad/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/pipelines.py sha256=NnFCxiLSfDBarn4-OcCMvvicmd5s_8WVH0uy8aTmVT0 1378
tsad/base/__init__.py sha256=sp8WRMYrU3_x0gM-N5DbQLVoIX27PxRLEMxRsLq8teQ 257
tsad/base/datasets.py sha256=1FBA4nBqNTom2oyAVzaaIU_YVBX0k8NvWW8eKYC0Qs8 16188
tsad/base/exceptions.py sha256=C3GIYjxhpvzQ3d7VddQNQ1M4qarujXMtT_s4kvXV02E 237
tsad/base/pipeline.py sha256=0DPJzPxPnUmrvm2xRYgFKaTN5YgYvGWgnpLMypZZRL8 8229
tsad/base/task.py sha256=G1L6AUbCOnAR_fNhYXivTK8NpIKTfbKztEKr3d_hyO8 3519
tsad/base/wrappers.py sha256=-TaGT1M5asCCn06THp1AJcvxbfuld5qJ5wJlMibaKIQ 3049
tsad/tasks/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/tasks/deep_learning_anomaly_detection.py sha256=M5lbTR1KqpDhh0SIELnbPfUm383TKq1_LzxFjq3rW9Y 16194
tsad/tasks/deep_learning_forecasting.py sha256=DW352hS9KVJ7kmTLjuJ_2yYeGdBWUl6hfaZA-Ay-XaA 11049
tsad/tasks/eda.py sha256=SQZt69hECJTInIWG3kqLh15AjI3Fyh2WKieMzlt7TF8 26986
tsad/tasks/feature_generation.py sha256=mcbzacWiF8b6vGfIQg5I0nQgb4LMaBI6mV6nIqHHWZg 8461
tsad/tasks/feature_selection.py sha256=tvcIdnzSd1vnNKb6bGXLX63T3kLwzhhXS-FDn8Pv5aM 9543
tsad/tasks/preprocess.py sha256=RO8bsxA5aXGq9h0DhTEedAbbsGOhofmpKelulhvxSf0 16891
tsad/tasks/visualization.py sha256=43S096DAQmLrKuRAfEcmuUd--Hl_V951qZtIrcR4FnU 5546
tsad/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/utils/eda.py sha256=xb7gYTsdbgUxX-OfEAJvZBmYOOKWcO8kvEg0uFSLvl0 1991
tsad/utils/imports.py sha256=MBd0gDMdc0Fgdtk1hDPZo98tHGDrGzkdrzCrCbQRlms 1935
tsad/utils/iterators.py sha256=FHJitpHvjXf-BVPJZhkP2_BafJ7x6mfEec6fzNFMWPM 2055
tsad/utils/preproc.py sha256=mNeuexwIibE47ZaCRebb2aCqxhZ--GFLS7a_b-S0Rqo 6128
tsad/utils/trainTestSplitting.py sha256=luYPjiBEC2TLoDDwJRt2pguMj2RJ4L0ohoxVj5pkUMQ 12989
tsad/utils/visualization.py sha256=e59u-M5sRznx2R3Ut5a9eUKKqaLrkGAHBJ5zHZ3enQs 4690
tsad/utils/ResidualAnomalyDetectionUtils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/utils/ResidualAnomalyDetectionUtils/feature_importance.py sha256=RgGBMdNgnTjkQcd3tKsxTvWwzPfLUdn_a_kwGwZglrU 1224
tsad/utils/ResidualAnomalyDetectionUtils/generateResidual.py sha256=FJJSiQsfBLmab0IfPG0alu4Y_55u1TftlxjJZJjenK4 299
tsad/utils/ResidualAnomalyDetectionUtils/stastics.py sha256=o9BVp43t0FQ6YrEbQqRjwuLDfQ2MwfqhrTX4R9M5UbY 3475
tsad/utils/evaluating/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/utils/evaluating/evaluating.py sha256=t3Cx_xQee3VQPWAakReInvP6_ZhU1AnvMI4dcmr7b4c 16443
tsad/utils/evaluating/src.py sha256=qluKVZdhf6U7m24GstFE6m0gAcn6-UgllQ7XqdifBdY 7722
tsad/utils/evaluating/univariate_funcs.py sha256=UrKkdwf5rvAJUAdhj-_y-pyYg5xBM-YuqaAeO9U-h3c 6833
tsad/utils/featproc/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/utils/featproc/toSpike.py sha256=aOOfVN1IclzBUATzc0DNodNeSaENRS-ifhom8zqBJPM 7463
tsad/utils/ml_models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tsad/utils/ml_models/deeplearning_regressors.py sha256=TvKC6FwKR7mRKw8fznU5In53VX3AzpkTp-tOuvbtdgs 18259
tsad/utils/ml_models/fitUtils.py sha256=vh8eHH4gCCdgtO47Za9z528YnnofU1WTr2yklzgDhfs 3085
tsad/utils/ml_models/nn_for_anomaly_detection.py sha256=ImCdBvcU_cv0VoCTgebnm_TV7D3zvu2BGITnTFHns8s 25012
tsad-0.19.4.dist-info/LICENSE sha256=gcuuhKKc5-dwvyvHsXjlC9oM6N5gZ6umYbC8ewW1Yvg 35821
tsad-0.19.4.dist-info/METADATA sha256=VGzB8U4o6gmNKcLDbivx6UGLO7Xtx-pc-IRqm-76H64 2159
tsad-0.19.4.dist-info/WHEEL sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ 92
tsad-0.19.4.dist-info/top_level.txt sha256=lcPtLSNsruSnEGBDBBv7mFD_lser0FYKdoazjpLPDaU 5
tsad-0.19.4.dist-info/RECORD

top_level.txt

tsad