torchal

View on PyPIReverse Dependencies (0)

0.0.2 torchal-0.0.2-py3-none-any.whl

Wheel Details

Project: torchal
Version: 0.0.2
Filename: torchal-0.0.2-py3-none-any.whl
Download: [link]
Size: 127070
MD5: b88e65dd5d8a437aa91c700dd39943ee
SHA256: 295aedcd20e34ef6e1b71f5b9cd54bdd110a9f7f4f751e2f598051bf91d1cd65
Uploaded: 2022-04-21 05:19:23 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: torchal
Version: 0.0.2
Summary: A codebase for active learning built on top of pycls.
Author: Prateek Munjal
Author-Email: prateekmunjal31[at]gmail.com
Home-Page: https://github.com/PrateekMunjal/TorchAL
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Requires-Dist: torch (==1.6.0)
Requires-Dist: torchcontrib (==0.0.2)
Requires-Dist: torchvision (==0.7.0)
Requires-Dist: tqdm (==4.63.0)
Requires-Dist: yacs (==0.1.8)
Requires-Dist: simplejson (==3.17.6)
Requires-Dist: optuna (==2.1.0)
Requires-Dist: plotly (==5.6.0)
Requires-Dist: matplotlib (==3.3.4)
Requires-Dist: scipy (==1.5.2)
Requires-Dist: scikit-learn (==0.24.2)
Requires-Dist: opencv-python (==3.4.2.17)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 8966 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
al_utils/ActiveLearning.py sha256=NASXSzheAANL5c70Z9bb-8O6WdyG2G1CesDvvY8naFw 7246
al_utils/Sampling.py sha256=EtBWXLeCiouJTf3FxJlLbEbmmeLVN5yAWlTNLQBy3fk 60503
al_utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
al_utils/autoaugment.py sha256=wIDxQA9ZtSAMnhM3BRlDqsoroJH7gLR7pPXTAXU61vY 8697
al_utils/data.py sha256=pb9CCrS-MEhJPj3FjxIRPrzwX5QTvGpJ35PwGDfCXDI 26664
al_utils/kcenter_greedy.py sha256=dKEpZMSM_H_wo4civ4_cYXimEQEhVcqW2ippaodFq1I 5438
al_utils/partition_data.py sha256=6eGgzBEqv1sgCbKAoToqbV-J9jOp2_N4-HZ0aMkRRE8 7035
al_utils/power_law.py sha256=D717ZJZgvIKaKN4S71aurBYepQJqlMjQ9YkfFbiO2bQ 1037
al_utils/query_models.py sha256=Lb5X6TAw9BYA9gTNupRm4n4RYCp3qdX13plk9yRSWIU 7329
al_utils/swa_util.py sha256=j1J5cJs_oYgFM9x77AWuH3HQDTAQPOMJgMsXkMC1DZg 9104
al_utils/vaal_util.py sha256=iABHvdp0TcTzHYjFiyxbSNE7LfNK6uHZyqSZtZ8d-PQ 16046
al_utils/vae_sampling.py sha256=bQQmACbSe-jn8JQ3AuX95M2V5A5AfbuyrGlXzXnHo2c 13511
helper/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
helper/aml_utils.py sha256=Hj0z_bu9xBer1lNQcN3gie4q0Wwgh3LTIbUmwvQOT7E 6070
helper/args_util.py sha256=WfWt9UXW-Kdo4_m1_cmOy0cOSssXtm_A_vuot7-r7KM 18553
helper/path_extractor.py sha256=VsSeIjiNMiAHt-ExrmupGPOpVGYyNtnEzv9Y6MPMIro 5904
helper/subprocess_utils.py sha256=ANmksulgw-evqifzm056uZ-P1yicBvTprwOxPGsbOPo 8016
pycls/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/core/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/core/config.py sha256=sp7N6RgvHD8yzldLR3Psaudd8Qih5-vM9KTC6xHDa5U 15501
pycls/core/losses.py sha256=YngzIpZN1vVEaGfbjOPwOuABlnx47gbtS1tCGsycAuI 721
pycls/core/model_builder.py sha256=JtlNFmhgsyWCNt1O6tEgoG7wCgnJ9szYEc7erXeEOOM 8454
pycls/core/optimizer.py sha256=068qyI5eaKBLFjmQ8tZNFYUqhpRBMOVAV7bmgdK8pRY 1957
pycls/core/temp.py sha256=fdFlFd9Xn6Mqk_-pOY_7WeICNTQOtFLYXRra_ppmZTk 1913
pycls/datasets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/datasets/autoaugment.py sha256=kPK5KXmZBdCpZxgNyRJp5QcF6F2pSFQbd1zG1qIu_hk 8150
pycls/datasets/cifar10.py sha256=vGJH-l3JyZnpRweyW4heBAKqt3ZjYjyTlz5c7KAY_v4 2810
pycls/datasets/data.py sha256=mAYZ6FgSKmPtnA4bZ3DW1vXvdSGQAhcC__PPKXVkskE 18566
pycls/datasets/imagenet.py sha256=FHi8jsxqWf94heq41o11FnKeJc48hcT_L6K-_gVBUA8 5147
pycls/datasets/loader.py sha256=_zuNyQL1YeOxNDDLICVgdd-g0M1dRybN_y9Cg1Oiwqs 8970
pycls/datasets/paths.py sha256=VGVWzI1ty25qKMG8c85cZoRfX3NT5_tVnPrWuG0BVhY 1007
pycls/datasets/sampler.py sha256=i5Q61ZHY0D9_Kd6Lotd9sEtst8LzbL0OdfJyrvCyhrI 3405
pycls/datasets/transforms.py sha256=w0paZ2BOg6IybLLsg7OVWytChW_bd-ciwITHekq8H9g 3760
pycls/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/models/anynet.py sha256=ywmO3LiPkV4RtNkrt40TVCGzEg0qCnvKRubpHLKZsBU 11259
pycls/models/coregcn.py sha256=FL0H1_MB_GGWg62WUekrPyx__CbEfgBSSj3SGLHjLOw 2198
pycls/models/effnet.py sha256=pfAfeOz_0oHhKQ-1mV-hgIGNhO3M85rV2z8YDru2joM 7550
pycls/models/resnet.py sha256=2TL-7cQAKtDqutJ7iN3DhojartrU3v9Gt3VaUpY2OMw 9964
pycls/models/resnet_orig.py sha256=UWIHzJdFt1d_mfS1eg2XyzNrHbgAWF9EWOWW7cdojhI 13720
pycls/models/vaal_model.py sha256=Vgrt8o1N7f3iHPfP3lx3rg7aPQakFlxdVrW2kW0eOKM 9503
pycls/models/resnet_style/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/models/resnet_style/resnet.py sha256=o4dn3tCkrewPUd6KdwLLQLRH_nXe5iAfHDuxXzDm9D4 14158
pycls/models/resnet_style/resnet_1.py sha256=VkIAAoBXCfMVdemtKmuvzOb64DNS_jjWxzH09dBdbsY 11309
pycls/models/resnet_style/resnet_2.py sha256=RpCSITmODpUIaXx_zd95OwEeZSCcq3wVM3pCaAbHOr0 4530
pycls/models/resnet_style/resnet_shake_shake.py sha256=uZVUi8js0KXP1-DTU0Z-j4yk4-IbS51Pm9Uc216OKHk 7326
pycls/models/resnet_style/shake_shake_function.py sha256=Nn6bNvwFBoaI45-B_8C3ZOZIdDMBYvPNkaI1QcxgHow 1327
pycls/models/resnet_style/wide_resnet.py sha256=8i7cBwQ0BFrGVyl9YtqNKhYTRHDm6ilglGLJLnYPvG0 3518
pycls/models/vgg_style/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/models/vgg_style/vgg.py sha256=IN6-zIVK-c7RCQ_JeCap2lW4XH8bYR3lU-wqqm_xrVg 8196
pycls/models/vgg_style/vgg_1.py sha256=AcbEoIfYNKdHqKmcEoDpnclpi3_Upmss2OIdcqNUgvQ 2032
pycls/models/vgg_style/vgg_2.py sha256=qdAUe-LMSLt3abNHFjHnB0tZzDX99mo_QF2qUgKPdnk 3872
pycls/models/vgg_style/vgg_check.py sha256=qviwwxLQsNVGTM9QsoLiUmT0F7RZsuZvTnYDon6MMiE 7743
pycls/models/vgg_style/vgg_mnist.py sha256=p9zjna-5dCRSxtecu38m_e4qH4nUTS0aAsWlfqtie6M 8196
pycls/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycls/utils/benchmark.py sha256=mGWi7DP6iSeXqCSkETTTffXTjo1nINwURV7FgCXDXPk 2761
pycls/utils/checkpoint.py sha256=7IoU2Wt1eXoIAook2yMZmSuyB6rZXV3EBMOIeFEhqpY 6141
pycls/utils/distributed.py sha256=JUl2B145_GMPyF8Prwv0G38qOYTUD4KgQRBeAlznL7s 1999
pycls/utils/error_handler.py sha256=N-8h3jvQDy909v8BCBSa4ypuvDY9FQAE5eAdaRvgOG8 1872
pycls/utils/logging.py sha256=8EjntK9DbQjpGWUDizslcKdEVh4vL5dImpCx2rzXkEM 3123
pycls/utils/lr_policy.py sha256=ZhVbhgfZLmRpDyosZsuTuLDVzViJz87pW914ZdT4Js4 1815
pycls/utils/meters.py sha256=0-4kSlr2oS_u7bvvayjlPTx55XydF4eveRucG4JUb7Y 11418
pycls/utils/metrics.py sha256=r4haXEDnYyHxvtkAva2w7KMpIIdFyKg8I_8jfpjlHEE 3192
pycls/utils/multiprocessing.py sha256=gjI9uPtgdQ9kn__L84pInnGBgKL7Z5XfA9dP51da-iY 5973
pycls/utils/net.py sha256=SMM9mODF4Z0ptO9aW9Cri7QGx4KnqS__ATTf30ZwUYk 3121
pycls/utils/plotting.py sha256=tJyNttJ6z2e80ASjUceieqoCTuQpZmsQAlCA3KeN9gI 4148
pycls/utils/timer.py sha256=Z5_tQnO-lotRCHrtvPifg_d_ZLDVgOSsRIJRKyn_hP8 871
torchal-0.0.2.dist-info/LICENSE sha256=sV_iWwh2BVngLgraKFp3KU4mXMADNbQcb6NMJWH2nHM 1052
torchal-0.0.2.dist-info/METADATA sha256=gDwJUsKdA-7j2HVOZwp7zqrbB5GPXKhxgk47JdUPu30 9811
torchal-0.0.2.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
torchal-0.0.2.dist-info/top_level.txt sha256=0w8YeOGrplUVGe-uCTQwDx8Yl9rbNE0EHXzrB2zp7XM 22
torchal-0.0.2.dist-info/RECORD

top_level.txt

al_utils
helper
pycls