torch-pgn

View on PyPIReverse Dependencies (0)

0.1.3 torch_pgn-0.1.3-py3-none-any.whl

Wheel Details

Project: torch-pgn
Version: 0.1.3
Filename: torch_pgn-0.1.3-py3-none-any.whl
Download: [link]
Size: 56600
MD5: c32e94eee58f80b9b536ddcd8ba79293
SHA256: ef372d5668cf5db27bd71c9b665ac5c45ac1149969f270408e15a2439eeafa46
Uploaded: 2024-09-10 00:08:32 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: torch-pgn
Version: 0.1.3
Summary: Proximity Graph Networks: Predicting ligand affinity with Message Passing Neural Networks
Author: Keiser Lab
Author-Email: keiser[at]keiserlab.org
Home-Page: https://github.com/keiserlab/torch_pgn
License: MIT
Keywords: chemistry,machine learning,affinity prediction,message passing neural network,graph neural network
Classifier: Programming Language :: Python :: 3.7
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >3.6,<3.8
Requires-Dist: torch (>=1.7.0)
Requires-Dist: torch-geometric (>=1.6.3)
Requires-Dist: networkx (>=2.5)
Requires-Dist: typed-argument-parser (==1.6.1)
Requires-Dist: pandas (==1.1.5)
Requires-Dist: rdkit (>=2020.09.3)
Requires-Dist: numpy (<=1.21.6,>=1.19.2)
Requires-Dist: tqdm (>=4.54.1)
Requires-Dist: tensorboard (>2.0)
Requires-Dist: scipy (<1.7)
Requires-Dist: scikit-learn (>=0.23.2)
Requires-Dist: hyperopt (>=0.2.5)
Requires-Dist: sympy (>=1.10.1)
Requires-Dist: optuna (>=3.6.1)
Requires-Dist: matplotlib (>=3.0.0)
Requires-Dist: six (>=1.0.0)
Requires-Dist: oddt (==0.7)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 1327 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.38.4)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
torch_pgn/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/args.py sha256=bDUb4S6tF0xt6OIeOo85PmXqoLgaKV2uzNB1ERKeh78 17108
torch_pgn/load_data.py sha256=ymTalOGQsiNkhm8r-DRDvsBa7AywSmI6tMzEddSgy2A 1179
torch_pgn/data/FingerprintDataset.py sha256=SUCZ6IcYza5vOmy1s5IWATCLf016Tyv-wZSQAiL6j9s 1765
torch_pgn/data/ProximityGraphDataset.py sha256=5-HUv3CT_U9mcQPL4loLMbW-Ks8FvbZ8D3oQuN79mk0 3812
torch_pgn/data/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/data/data_utils.py sha256=tkkTWeRCytW9j4pUPw3erBFacKKpMSJKTg2sgkBD3p8 8870
torch_pgn/data/dmpnn_utils.py sha256=D02LZ1K0nubgO6WPYdq6NCs40g7bVEFoBmbRVmZqGiw 11130
torch_pgn/data/load_data.py sha256=VYiFJN_DoV7hq_YVPSmYE4eohlizFAENkoHvYYOuoV4 11253
torch_pgn/datasets/FPDataset.py sha256=aHohJA7Jh3ovIhPmqP1CrTTJdupwXS3N2hsvhmQcYQc 1699
torch_pgn/datasets/ManyVsManyDataset.py sha256=fhgS3m3eiZH0Msg1C9eKjfK3ZjJoJxcc756GSBCAxT8 2318
torch_pgn/datasets/OneVsManyDataset.py sha256=P0UWU5GFIAnBIxxWpfOGAsWqWDUieb-oGHVoTtHSFdo 1536
torch_pgn/datasets/PGDataset.py sha256=sJ5O9hGWyZzjHFx5fF4AincUkm0PoNu6cY36c2KrBYM 5008
torch_pgn/datasets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/evaluate/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/evaluate/plot_utils.py sha256=7gaaCcaCQrndhBH7RM8KZBTh2CxjUOX8qCg2ZSWGfyA 1524
torch_pgn/featurization/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/featurization/featurize.py sha256=wQf-IcF0THdqxN_oHyhbdt1857WkNdQspHE5NSrQKFA 2729
torch_pgn/featurization/simple_featurization.py sha256=Z54BWLI7Zi32dHZUY17cmAhN9UALNyyBrWL4C97N-WE 4082
torch_pgn/graphs/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/graphs/graph_utils.py sha256=dtFZ-zVTWNaB9Emp94qyZmPzLCqV8wX2o78N01WYoeI 6067
torch_pgn/graphs/proximal_residues.py sha256=7q5Q0P-tJ57D8MWxc4Tp2VURysEi6jIArYXzSHC_7gs 8035
torch_pgn/graphs/proximity_graph.py sha256=PqzUM91fNo1JAB9_GPGSCATkHSrGzbxsVqv1Iq56mcA 11161
torch_pgn/models/DimeNet.py sha256=rK_jmzVdfkQYHx8uBdkZkMck4-G9bazfu5dDm6z5XQ4 9897
torch_pgn/models/FPEncoder.py sha256=tTAF8wrJvr49oHl3n5s7Tnmy_-XCp1Yq0g6mem9rFyc 372
torch_pgn/models/GGNet.py sha256=eOaKPejbHiLdWKu1Q8jpPAjg9oHjisNumX22eHUCR2k 1940
torch_pgn/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/models/dimenet_utils.py sha256=amuSnX-iOlhz6eNuA-qYIXkLrPgJ5pLFRTBnmk8ZqN0 12018
torch_pgn/models/dmpnn_encoder.py sha256=Nd6K7pXeipIriPznHIuf0mTVOF3xtIgu4sMBMqB-aBM 6145
torch_pgn/models/model.py sha256=Pes0faoyDhdQ0s_yrB9Uf-z2U2X9YXfRBpzGoTuAwKI 3118
torch_pgn/models/nn_utils.py sha256=JqocEtMMbEG3iVzgPGzcTcSMC7B0kwQRrXBsFbM9q5A 2332
torch_pgn/models/pfp_encoder.py sha256=Sqo-GWQcnqkkItDc4jIixyowC-azWhZlresgr7t-5-k 6181
torch_pgn/train/Trainer.py sha256=UOiWCP1hmOY6nxaOYO5RBW8bixvz7YGsxgOTSKZ9K9o 2734
torch_pgn/train/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
torch_pgn/train/cross_validate_model.py sha256=yoI0i-5ICtfsRa9_dpIRTFCH_wG4lbH1gcV2MPR4zmo 3107
torch_pgn/train/evaluate_model.py sha256=an4PepD-p1IQLB0J-VxgifBn7c4IAxite9irhlt9yQc 1383
torch_pgn/train/hyperopt.py sha256=7EDfgZwpmnA6b4z49Kdb7HTCfm5kej8-uE22pOu19qY 3949
torch_pgn/train/run_training.py sha256=Nlw0JodvTiy4cGHzVc1iIK4-l9kIILOQc3N8r1Bwxv4 698
torch_pgn/train/train.py sha256=lT353_4cqOaYal7hKrvSUmCtRLG_tQ6wiEyE6BnBPow 1632
torch_pgn/train/train_model.py sha256=13PeNXOLfe_HxIwneTCyhT9UZEvmLSQpK0IrpR1p7mE 7255
torch_pgn/train/train_utils.py sha256=1XNXgNKpg8Wzy9i_WDo18KsBFOnoXqVwlmXvH5ERvp4 7568
torch_pgn-0.1.3.dist-info/LICENSE sha256=aJ-Umg2hB6q6u-kjZiU4KEHXsv0EZsE9wAkubee-v3k 1066
torch_pgn-0.1.3.dist-info/METADATA sha256=yC9Sh1FBMh6ArezL272AcNRbCJY2nEXgbzs6oRrBvYU 2525
torch_pgn-0.1.3.dist-info/WHEEL sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo 92
torch_pgn-0.1.3.dist-info/top_level.txt sha256=bDw8fWAA0AKWKK_tLWuK59i1e50LCS_UbTsJE5weubk 10
torch_pgn-0.1.3.dist-info/RECORD

top_level.txt

torch_pgn