titanic-regression-model

View on PyPIReverse Dependencies (0)

0.0.2 titanic_regression_model-0.0.2-py3-none-any.whl

Wheel Details

Project: titanic-regression-model
Version: 0.0.2
Filename: titanic_regression_model-0.0.2-py3-none-any.whl
Download: [link]
Size: 80621
MD5: cea3b3414fb733731e348539b6dc6946
SHA256: 6ac15435b24bcaa9d20e8e954c8324c8d5d8adf2e15b987f9096aed2e0dded9b
Uploaded: 2023-04-17 14:59:12 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: titanic-regression-model
Version: 0.0.2
Summary: Assignment for kaggle titanic problem
Author: Nicholas Katada
Author-Email: nicholas.katada.work[at]gmail.com
Home-Page: https://github.com/nicholas-katada/deploying-machine-learning-models/tree/master/assignment-section-05-titanic
License: BSD-3
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Requires-Python: >=3.6.0
Requires-Dist: numpy (<2.0.0,>=1.21.0)
Requires-Dist: pandas (<2.0.0,>=1.3.5)
Requires-Dist: pydantic (<2.0.0,>=1.8.1)
Requires-Dist: scikit-learn (<2.0.0,>=1.1.3)
Requires-Dist: strictyaml (<2.0.0,>=1.3.2)
Requires-Dist: ruamel.yaml (<1.0.0,>=0.16.12)
Requires-Dist: feature-engine (<2.0.0,>=1.0.2)
Requires-Dist: joblib (<2.0.0,>=1.0.1)
Requires-Dist: xgboost (<2.0.0,>=1.7.3)
Description-Content-Type: text/markdown
[Description omitted; length: 38 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.40.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
classification_model/VERSION sha256=pd00ZUajhDYpNrl6TC9dotPSUwQ-qWeap7l9iVUN_b0 6
classification_model/__init__.py sha256=eN81o81JK9M_VZIwyi_QTh4GCHW-l07-aiSYi7dGoYo 862
classification_model/config.yml sha256=JfRvA-85DLe5O9q_9nhjqjYv-Y9GdIS1wf9w0Qq4Q9Y 1041
classification_model/pipeline.py sha256=H10EEQvPOkvfYL8D71zmlzSdeqQkdvni8dUFX9XsJ2k 1324
classification_model/predict.py sha256=NUZ3MhrYeTZy0SRFRsJCLKL7uB4opG2Qqy1AEOhpNvQ 1070
classification_model/train_pipeline.py sha256=-9mumCL8sHh3clovjtECuVggr3RhU3KaiyhiAUnB_Vs 894
classification_model/config/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/config/core.py sha256=0N18EBhdOUqY1g1urnp9O8lMiG3T77AFF35xT3YiyDg 2567
classification_model/datasets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/datasets/test.csv sha256=VgI7mUgjbzx6HJRI_PQYsoPhCe8Xf6jH4GkVjdfdUrI 28629
classification_model/datasets/train.csv sha256=fRGP74tsz3-BERh3vDiFNvex5JimVePWSdGaqgEOn28 61194
classification_model/processing/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/processing/cabin_encoder.py sha256=DMfmgPRuZnw94KItuha4P-rFZub2dodHJuJXN2A6s_U 1012
classification_model/processing/data_manager.py sha256=zqHmvgKcKasyKW7PyUmMl1SDBXluPBrCV9SinMwqpzY 1674
classification_model/processing/validation.py sha256=jPHzXYtux4hu3S3ItC717g5Dy37qOJMyhvWJ7J_abv0 1757
classification_model/trained_models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/trained_models/classification_model_output_v0.0.1.pkl sha256=lnsVeIzqeEVVTShGd3uDLXD-ZkOMxyG70RGecZeX1cY 144137
titanic_regression_model-0.0.2.dist-info/METADATA sha256=KsM54sgGriRE05qBk1MAlnlWjWhV07nqmrvVh5_wGxs 1287
titanic_regression_model-0.0.2.dist-info/WHEEL sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 92
titanic_regression_model-0.0.2.dist-info/top_level.txt sha256=VmH6pvgPC8wm0j78xquIgbVbxaqmh34ZTHhYhLSNQ0M 21
titanic_regression_model-0.0.2.dist-info/RECORD

top_level.txt

classification_model