sysidentpy

View on PyPIReverse Dependencies (1)

0.4.1 sysidentpy-0.4.1-py3-none-any.whl

Wheel Details

Project: sysidentpy
Version: 0.4.1
Filename: sysidentpy-0.4.1-py3-none-any.whl
Download: [link]
Size: 117778
MD5: 3797a1bdaf1800f960552b964db8d0ae
SHA256: c6260404e44b58e0a1393a78ada60b9c000e601fca2e624b146234bc7306bfbc
Uploaded: 2024-08-11 20:42:34 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: sysidentpy
Version: 0.4.1
Summary: A Python Package For System Identification Using NARMAX Models
Author: Wilson Rocha Lacerda Junior
Author-Email: wilsonrljr[at]outlook.com
Maintainer-Email: Wilson Rocha Lacerda Junior <wilsonrljr[at]outlook.com>
Project-Url: homepage, http://sysidentpy.org
Project-Url: documentation, http://sysidentpy.org/
Project-Url: repository, https://github.com/wilsonrljr/sysidentpy
Project-Url: changelog, https://github.com/wilsonrljr/sysidentpy/blob/master/CHANGELOG
License: BSD 3-Clause License Copyright (c) 2019, Wilson Rocha; Luan Pascoal; Samuel Oliveira; Samir Martins All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Keywords: data-science,forecasting,NARMAX,NARX,system-identification,machine-learning,time-series,time-series-analysis,time-series-classification,time-series-regression
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: License :: OSI Approved :: BSD License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Science/Research
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development :: Libraries :: Application Frameworks
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Software Development :: Libraries
Classifier: Operating System :: OS Independent
Requires-Python: <3.13,>=3.7
Requires-Dist: numpy (<2.0,>=1.19.2)
Requires-Dist: scipy (>=1.7.0)
Requires-Dist: matplotlib (>=3.3.2)
Requires-Dist: torch (>=1.7.1); extra == "all"
Requires-Dist: pytest (<8.0.0,>=7.0.0); extra == "dev"
Requires-Dist: pytest-cov (<4.0.0,>=2.12.0); extra == "dev"
Requires-Dist: flake8 (<7.0.0,>=3.8.3); extra == "dev"
Requires-Dist: black (>=23.3.0); extra == "dev"
Requires-Dist: isort (<6.0.0,>=5.0.6); extra == "dev"
Requires-Dist: pre-commit; extra == "dev"
Requires-Dist: ruff (<3.0.0,>=0.2.2); extra == "dev"
Requires-Dist: mkdocs (<2.0.0,>=1.1.2); extra == "doc"
Requires-Dist: mkdocs-material (<=9.5.21,>=8.1.4); extra == "doc"
Requires-Dist: mdx-include (<2.0.0,>=1.4.1); extra == "doc"
Requires-Dist: mkdocs-markdownextradata-plugin (<=0.2.5,>=0.1.7); extra == "doc"
Requires-Dist: typer (<0.5.0,>=0.4.1); extra == "doc"
Requires-Dist: pyyaml (<7.0.0,>=5.3.1); extra == "doc"
Requires-Dist: mkdocstrings[python] (<=0.21.2); extra == "doc"
Requires-Dist: mkdocs-redirects; extra == "doc"
Requires-Dist: mkdocs-minify-plugin (<=0.6.4); extra == "doc"
Requires-Dist: mkdocs-glightbox (<=0.3.2); extra == "doc"
Requires-Dist: mkdocs-jupyter (<=0.25.0); extra == "doc"
Requires-Dist: jinja2 (==3.0.3); extra == "doc"
Requires-Dist: scikit-learn; extra == "examples"
Requires-Dist: catboost; extra == "examples"
Provides-Extra: all
Provides-Extra: dev
Provides-Extra: doc
Provides-Extra: examples
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: AUTHORS
[Description omitted; length: 14463 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (72.1.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
sysidentpy/__init__.py sha256=075iz_wmJWFZOiHbuinNMyz1WJHo7tp0N817twjxQkQ 23
sysidentpy/narmax_base.py sha256=DucEFrKl1eLEgtBL-peZUckOG4xE1gNiwgmu_A-qihg 36945
sysidentpy/basis_function/__init__.py sha256=irJRjWaTyFAohrsjAc2i1lVLzzsee7-cc2qLw2TUqrk 61
sysidentpy/basis_function/_basis_function.py sha256=VXjYWrJbmgkTz77FYV3Dv5K1IARQHLdEY52xInpEm-Q 10784
sysidentpy/basis_function/basis_function_base.py sha256=bVAUqIAsCMYSlJuJTvHuyLIWRz_U5-teDZ-1Tja8UV0 764
sysidentpy/basis_function/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/basis_function/tests/test_basis_functions.py sha256=IMIaQxBqh_4jNIGQWSNy2NNGgA8ifyeFpK2KSAkxrmo 4843
sysidentpy/general_estimators/__init__.py sha256=EYdfz7G0F1ECAdkk34ZHahU6WXlS1dWfiHzvCUwj8Ck 24
sysidentpy/general_estimators/narx.py sha256=2BaeEFQwFCHRnZINi0XAyLo5l-VXeP71sfZv0VIciS0 23149
sysidentpy/general_estimators/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/general_estimators/tests/test_general_narx.py sha256=ONDxFmqGVc83_G8MatLZKfV7eIJZSKwBGloZVsRvxYQ 9274
sysidentpy/metaheuristics/__init__.py sha256=pIdhmOhZsslWVN38w0UEtBwt3L-qFEqmC73_JeVBUaE 30
sysidentpy/metaheuristics/bpsogsa.py sha256=dthl6xfQbkcBko382qVc2GXEitB8h3zVemZ_8-kiT6I 11187
sysidentpy/metaheuristics/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/metaheuristics/tests/test_bpsogsa.py sha256=uuVEaGWGweLBDExweWGTZz87qb6l0jcl0DDu2ImSCKg 265
sysidentpy/metrics/__init__.py sha256=ATUVgZH2-R34izZfP7MzZ9ejje1yUWdvr5H9HbbW84Y 779
sysidentpy/metrics/_regression.py sha256=F3q4xgnBVBJnY-bm90gIYEAXlUsLYbkEeyrHTVJ4R-w 12774
sysidentpy/metrics/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/metrics/tests/test_regression.py sha256=FXYXJHJVSxICPxUT0m01Hz9UWfvDFB-ZwEvIogydmVE 3410
sysidentpy/model_structure_selection/__init__.py sha256=CtGsbHv3VWwKvhhmIbTmgjVFBwPyihCdSpdrkhdmhEE 315
sysidentpy/model_structure_selection/accelerated_orthogonal_least_squares.py sha256=lZQ2dhSaNr77n9hqCsBe43g4dsjMMruW9JyaYYoF_gQ 21433
sysidentpy/model_structure_selection/entropic_regression.py sha256=Qpc65HVmVqTD8TFMZfRAkdfLmpudTbCEHC8nw16s-jY 33968
sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py sha256=dmjXLrs5sANbvghXNkoXeM-X4dqFDWiKGrah9hnmTB0 32979
sysidentpy/model_structure_selection/meta_model_structure_selection.py sha256=cA13XK0RCxkmR7lMh8hjLitLyNs9470M3PmBbIIytbQ 26172
sysidentpy/model_structure_selection/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/model_structure_selection/tests/test_aols.py sha256=arTa8513nRqjaQ96hmcfhLfn7ARtmgSEmzUGMxN3YAw 4689
sysidentpy/model_structure_selection/tests/test_er.py sha256=dwlu43vFUtJriZdXsT9f6ZxTdl4uYbwI5Y7LkB_hPEE 5584
sysidentpy/model_structure_selection/tests/test_frols.py sha256=RTvoAY2FsPiL9r-5mK2eid43V9OdqhZJ7nJvaV18D_w 8368
sysidentpy/model_structure_selection/tests/test_metamss.py sha256=R8c5qZFQ5A90tL2niEOigLRjHf1Kk3MRJw8UQ-L5VDs 4409
sysidentpy/multiobjective_parameter_estimation/__init__.py sha256=onbzXE4W__1CK-D59klMsbxQtWUBkj-nNYcvjFsZ97k 272
sysidentpy/multiobjective_parameter_estimation/estimators.py sha256=MKTq6R-4Giz4UZ0LWV4Mhrhcwwz3Pu1UJLOMmTRhJXs 19310
sysidentpy/multiobjective_parameter_estimation/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/multiobjective_parameter_estimation/tests/test_mo_estimators.py sha256=rT2CMBDxzT9wOQpROGJoeqRcioahlYo090hjnF0V6_U 8515
sysidentpy/neural_network/__init__.py sha256=gMpMx3QCxE98DsrClzpS51m2djKYZqLa-VaMynmXpcU 29
sysidentpy/neural_network/narx_nn.py sha256=uCAQ8dyZRhP7GrWgI2UByH4cl1Y6TZKp8q_Mv6YiW_Q 29715
sysidentpy/neural_network/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/neural_network/tests/test_narxnn.py sha256=dtchiB8OJ1unPCOfUe8VSVF85r8-khwiX81Ob_dF-zM 16341
sysidentpy/parameter_estimation/__init__.py sha256=D0JpXJ2vYpeLP2o2zQaSUyuqKsWDLPKVSUIsM4bgUW4 1348
sysidentpy/parameter_estimation/estimators.py sha256=7wj28LmLHTWa7Kmnb2FALRRK6dsEKypTdArs4bcusYs 67938
sysidentpy/parameter_estimation/estimators_base.py sha256=3-9DwPk4fudnLlbSyVYc8rzjY1RDGSZfDp3Es9nndXk 5345
sysidentpy/parameter_estimation/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/parameter_estimation/tests/test_estimators.py sha256=liO6yvSjiOCiBH2z-W_PbpH73IFWxP9hUo3HUzsfIFw 9112
sysidentpy/residues/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/residues/residues_correlation.py sha256=C9vf07HWHbf6uXFIlztruPCA2phKHoGlDpZPIW84qQE 2297
sysidentpy/residues/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/residues/tests/test_residues.py sha256=1IwAvfxgDafV3bJrUleA5pMFi6wL2iabkZjUygX7jdU 2042
sysidentpy/simulation/__init__.py sha256=S1x1xKIxcRH31RE1v302C54t78VsNECcUrx7p-yxl7Q 41
sysidentpy/simulation/_simulation.py sha256=9cjbAtuhfqwDAnzUabnUxQk7trIXp-Y-zULpl6WDAjc 21808
sysidentpy/simulation/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/simulation/tests/test_simulation.py sha256=tA9LaeSM_EEt7gTweDpO1vJU_FGjA2WzWXISq_oxqR4 13356
sysidentpy/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/tests/test_narmax_base.py sha256=lLP6qaUjVm7l57khRf-KVhsABqx5oCyHnmncZ385FX0 22620
sysidentpy/utils/__init__.py sha256=KaL_hIcB9FhgRgYB5e6OZqZ23olzQJmqTvNbzIAcUds 352
sysidentpy/utils/_check_arrays.py sha256=fPnDIx2X-9wyXT9cccirGrbGXpXATy4OEn2Dz3PUnMM 4969
sysidentpy/utils/deprecation.py sha256=dMxytlS3ujfvS9hzyYOgqnx6ldWLjztms7eSFsBjd0c 2337
sysidentpy/utils/display_results.py sha256=JVgImbZa6H_6kyYbMrXEia6rgKkSmKMris8Nx2CAyWA 3774
sysidentpy/utils/generate_data.py sha256=nGz2Z26J8FNvFxye1opLyzvf_XuhNmoyrF11xbV6-j8 3846
sysidentpy/utils/narmax_tools.py sha256=G_I2mKRuJjnE7u8KyRGYRQarGbSONz8l58Cvrm5Rmqg 5621
sysidentpy/utils/plotting.py sha256=3GF4smeXQmEvTqp5iUSpt_s38njo5pGu2awsmixUF0w 3104
sysidentpy/utils/save_load.py sha256=DJH2i37bhIsTtPvYVc7Tr_O7LGbQpTmtXYILqMb3rvE 1700
sysidentpy/utils/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/utils/tests/test_utils.py sha256=hqLKJwWOJNfFgFzrD0Ys49cGpfPskIxhngDz03amnns 3709
sysidentpy-0.4.1.dist-info/AUTHORS sha256=3IG3yTU7hB2ZfEIE6uRAsDkKEDAsXGIaKxac4XYT0EQ 311
sysidentpy-0.4.1.dist-info/LICENSE sha256=cCNiC063y8K9pWynhxFaye0U8HLheCNRdvKHvs36-DY 1587
sysidentpy-0.4.1.dist-info/METADATA sha256=gIBVRwT8bbZba4tjd_jyJBsRYmZLfjnKTcgPRTWGL7w 20023
sysidentpy-0.4.1.dist-info/WHEEL sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs 91
sysidentpy-0.4.1.dist-info/top_level.txt sha256=_a6Pvjc_sdK9F5OixC538RUD_Cvt_MiEvwOGLsjpMGQ 11
sysidentpy-0.4.1.dist-info/RECORD

top_level.txt

sysidentpy