sysidentpy

View on PyPIReverse Dependencies (2)

0.5.3 sysidentpy-0.5.3-py3-none-any.whl

Wheel Details

Project: sysidentpy
Version: 0.5.3
Filename: sysidentpy-0.5.3-py3-none-any.whl
Download: [link]
Size: 130568
MD5: 260923c4130a90a96ab51039c5f9bd42
SHA256: c04fe0990705c8fc566e46f54c33c087aed2a5c3c9232b129721ff858bb94ea3
Uploaded: 2025-02-02 19:34:19 +0000

dist-info

METADATA

Metadata-Version: 2.2
Name: sysidentpy
Version: 0.5.3
Summary: A Python Package For System Identification Using NARMAX Models
Author: Wilson Rocha Lacerda Junior
Author-Email: wilsonrljr[at]outlook.com
Maintainer-Email: Wilson Rocha Lacerda Junior <wilsonrljr[at]outlook.com>
Project-Url: homepage, http://sysidentpy.org
Project-Url: documentation, http://sysidentpy.org/
Project-Url: repository, https://github.com/wilsonrljr/sysidentpy
Project-Url: changelog, https://github.com/wilsonrljr/sysidentpy/blob/master/CHANGELOG
License: BSD 3-Clause License Copyright (c) 2019, Wilson Rocha; Luan Pascoal; Samuel Oliveira; Samir Martins All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Keywords: data-science,forecasting,NARMAX,NARX,system-identification,machine-learning,time-series,time-series-analysis,time-series-classification,time-series-regression
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: License :: OSI Approved :: BSD License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Science/Research
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development :: Libraries :: Application Frameworks
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Software Development :: Libraries
Classifier: Operating System :: OS Independent
Requires-Python: <3.13,>=3.7
Requires-Dist: numpy (<2.0,>=1.19.2)
Requires-Dist: scipy (>=1.7.0)
Requires-Dist: matplotlib (>=3.3.2)
Requires-Dist: pytest (<8.0.0,>=7.0.0); extra == "dev"
Requires-Dist: pytest-cov (<4.0.0,>=2.12.0); extra == "dev"
Requires-Dist: flake8 (<7.0.0,>=3.8.3); extra == "dev"
Requires-Dist: black (>=23.3.0); extra == "dev"
Requires-Dist: isort (<6.0.0,>=5.0.6); extra == "dev"
Requires-Dist: pre-commit; extra == "dev"
Requires-Dist: ruff (<3.0.0,>=0.2.2); extra == "dev"
Requires-Dist: scikit-learn; extra == "examples"
Requires-Dist: catboost; extra == "examples"
Requires-Dist: mkdocs (<2.0.0,>=1.1.2); extra == "doc"
Requires-Dist: mkdocs-material (<=9.5.21,>=8.1.4); extra == "doc"
Requires-Dist: mdx-include (<2.0.0,>=1.4.1); extra == "doc"
Requires-Dist: mkdocs-markdownextradata-plugin (<=0.2.5,>=0.1.7); extra == "doc"
Requires-Dist: typer (<0.5.0,>=0.4.1); extra == "doc"
Requires-Dist: pyyaml (<7.0.0,>=5.3.1); extra == "doc"
Requires-Dist: mkdocstrings[python] (<=0.25.2); extra == "doc"
Requires-Dist: mkdocstrings-python (<=1.10.8); extra == "doc"
Requires-Dist: mkdocs-redirects; extra == "doc"
Requires-Dist: mkdocs-minify-plugin (<=0.6.4); extra == "doc"
Requires-Dist: mkdocs-glightbox (<=0.3.2); extra == "doc"
Requires-Dist: mkdocs-jupyter (<=0.25.0); extra == "doc"
Requires-Dist: jinja2 (==3.0.3); extra == "doc"
Requires-Dist: torch (<2.4.0,>=1.7.1); extra == "all"
Provides-Extra: dev
Provides-Extra: examples
Provides-Extra: doc
Provides-Extra: all
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: AUTHORS
[Description omitted; length: 14785 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.8.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
sysidentpy/__init__.py sha256=lDz-opl8U1Z5f8eu5PasmXoD9WSZ1qLc9eRa0actOe4 23
sysidentpy/narmax_base.py sha256=xnLg53jCQuZorV6_yyXLosZowRe6XRmklzTWTyxD-g8 37035
sysidentpy/basis_function/__init__.py sha256=zYXODBHW6z_9mTzliGnOCmyiqAF1nHrGJfR7EbLTvN8 449
sysidentpy/basis_function/_bersntein.py sha256=f_99WzCHksSr5Mv86D4CrwEr-sVXEawEBWYv8QDo5l8 5657
sysidentpy/basis_function/_bilinear.py sha256=w8Sgi_LVrLDjSSQTfOvsKNbYrgYrnhVISyVK04zo0qQ 6095
sysidentpy/basis_function/_fourier.py sha256=koCS99SI73ypN1HvVufpv3W4gDSX-9fBczIeFYSzDuM 4563
sysidentpy/basis_function/_hermite.py sha256=VAde1CQoOEm-87NleUicoaXrEzxAaJSe-dm22QxBd6I 4772
sysidentpy/basis_function/_hermite_normalized.py sha256=0WNmyTEHyXYq5U4iiV_m15Bj9rpuQL5vjmW7E8lpy5k 4621
sysidentpy/basis_function/_laguerre.py sha256=RHqzlstYvfapOFzmKfyTuTGiekTs-H07OnAFmvetBoQ 4720
sysidentpy/basis_function/_legendre.py sha256=xafF8n_blxcHb1uAPlVPLvA4tEKoIatvuZMc8waLAoE 4425
sysidentpy/basis_function/_polynomial.py sha256=ZGfR35rcy-DnGkC2wtVe_ZEmHI0H_QIwi1qobvAoAzU 4443
sysidentpy/basis_function/basis_function_base.py sha256=SLilZ9oElOJ2z0ircAITjQ4Uf82kkQCsuU3kq7FTBbM 3247
sysidentpy/basis_function/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/basis_function/tests/test_basis_functions.py sha256=IMIaQxBqh_4jNIGQWSNy2NNGgA8ifyeFpK2KSAkxrmo 4843
sysidentpy/general_estimators/__init__.py sha256=EYdfz7G0F1ECAdkk34ZHahU6WXlS1dWfiHzvCUwj8Ck 24
sysidentpy/general_estimators/narx.py sha256=ObZ0k5AKGhIDdzhCCeXVVzlVHsPQliEVYjE-TjD_-is 23139
sysidentpy/general_estimators/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/general_estimators/tests/test_general_narx.py sha256=ONDxFmqGVc83_G8MatLZKfV7eIJZSKwBGloZVsRvxYQ 9274
sysidentpy/metaheuristics/__init__.py sha256=pIdhmOhZsslWVN38w0UEtBwt3L-qFEqmC73_JeVBUaE 30
sysidentpy/metaheuristics/bpsogsa.py sha256=dthl6xfQbkcBko382qVc2GXEitB8h3zVemZ_8-kiT6I 11187
sysidentpy/metaheuristics/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/metaheuristics/tests/test_bpsogsa.py sha256=uuVEaGWGweLBDExweWGTZz87qb6l0jcl0DDu2ImSCKg 265
sysidentpy/metrics/__init__.py sha256=ATUVgZH2-R34izZfP7MzZ9ejje1yUWdvr5H9HbbW84Y 779
sysidentpy/metrics/_regression.py sha256=F3q4xgnBVBJnY-bm90gIYEAXlUsLYbkEeyrHTVJ4R-w 12774
sysidentpy/metrics/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/metrics/tests/test_regression.py sha256=FXYXJHJVSxICPxUT0m01Hz9UWfvDFB-ZwEvIogydmVE 3410
sysidentpy/model_structure_selection/__init__.py sha256=CtGsbHv3VWwKvhhmIbTmgjVFBwPyihCdSpdrkhdmhEE 315
sysidentpy/model_structure_selection/accelerated_orthogonal_least_squares.py sha256=KWnopfIm3yWvce94tjmgLkrMPMk6p1uYrIopYbsCImE 21605
sysidentpy/model_structure_selection/entropic_regression.py sha256=EUtlNmNACTwEclCN9jC4dFY7ttgQpvVDtTdWLvmyk9U 34140
sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py sha256=i_xy3oFrUx4oDIWLviGYeedqgIwH9yadj6hs7b2B4TM 33151
sysidentpy/model_structure_selection/meta_model_structure_selection.py sha256=s7ew5vUsB9JPRYyf-EhbjUjPZai8-ITVtThqFPE9yyM 26286
sysidentpy/model_structure_selection/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/model_structure_selection/tests/test_aols.py sha256=QUUvzc6ksqw7UfVoHr9Ib1lm3lhfQsEtKhnHNyiGtlA 4673
sysidentpy/model_structure_selection/tests/test_er.py sha256=dwlu43vFUtJriZdXsT9f6ZxTdl4uYbwI5Y7LkB_hPEE 5584
sysidentpy/model_structure_selection/tests/test_frols.py sha256=RTvoAY2FsPiL9r-5mK2eid43V9OdqhZJ7nJvaV18D_w 8368
sysidentpy/model_structure_selection/tests/test_metamss.py sha256=R8c5qZFQ5A90tL2niEOigLRjHf1Kk3MRJw8UQ-L5VDs 4409
sysidentpy/multiobjective_parameter_estimation/__init__.py sha256=onbzXE4W__1CK-D59klMsbxQtWUBkj-nNYcvjFsZ97k 272
sysidentpy/multiobjective_parameter_estimation/estimators.py sha256=qcNuaSWdwRnz3cr6DoUYIPhT7RUoaPINFqMrNDf0sEc 19332
sysidentpy/multiobjective_parameter_estimation/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/multiobjective_parameter_estimation/tests/test_mo_estimators.py sha256=rT2CMBDxzT9wOQpROGJoeqRcioahlYo090hjnF0V6_U 8515
sysidentpy/neural_network/__init__.py sha256=gMpMx3QCxE98DsrClzpS51m2djKYZqLa-VaMynmXpcU 29
sysidentpy/neural_network/narx_nn.py sha256=DWVUnDodOVBnMV_DXkl4WL-Opvbqii6dG-k74deJKbg 29929
sysidentpy/neural_network/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/neural_network/tests/test_narxnn.py sha256=dtchiB8OJ1unPCOfUe8VSVF85r8-khwiX81Ob_dF-zM 16341
sysidentpy/parameter_estimation/__init__.py sha256=D0JpXJ2vYpeLP2o2zQaSUyuqKsWDLPKVSUIsM4bgUW4 1348
sysidentpy/parameter_estimation/estimators.py sha256=7wj28LmLHTWa7Kmnb2FALRRK6dsEKypTdArs4bcusYs 67938
sysidentpy/parameter_estimation/estimators_base.py sha256=0Ysz-abggBQsSPG_fQH6Of5uvZnanTNpCJ5s9YdW95U 5490
sysidentpy/parameter_estimation/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/parameter_estimation/tests/test_estimators.py sha256=kqTK3zxKpnxArMj-E_YVn67PGAxlfV5mLGJ-x3qSu8w 9096
sysidentpy/residues/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/residues/residues_correlation.py sha256=C9vf07HWHbf6uXFIlztruPCA2phKHoGlDpZPIW84qQE 2297
sysidentpy/residues/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/residues/tests/test_residues.py sha256=1IwAvfxgDafV3bJrUleA5pMFi6wL2iabkZjUygX7jdU 2042
sysidentpy/simulation/__init__.py sha256=S1x1xKIxcRH31RE1v302C54t78VsNECcUrx7p-yxl7Q 41
sysidentpy/simulation/_simulation.py sha256=dhXPhDmanIRt4ZUr6e4jkCsnG85sFJwSeDJzjrTZQZQ 22118
sysidentpy/simulation/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/simulation/tests/test_simulation.py sha256=tA9LaeSM_EEt7gTweDpO1vJU_FGjA2WzWXISq_oxqR4 13356
sysidentpy/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/tests/test_narmax_base.py sha256=lLP6qaUjVm7l57khRf-KVhsABqx5oCyHnmncZ385FX0 22620
sysidentpy/utils/__init__.py sha256=KaL_hIcB9FhgRgYB5e6OZqZ23olzQJmqTvNbzIAcUds 352
sysidentpy/utils/_check_arrays.py sha256=fPnDIx2X-9wyXT9cccirGrbGXpXATy4OEn2Dz3PUnMM 4969
sysidentpy/utils/deprecation.py sha256=dMxytlS3ujfvS9hzyYOgqnx6ldWLjztms7eSFsBjd0c 2337
sysidentpy/utils/display_results.py sha256=JVgImbZa6H_6kyYbMrXEia6rgKkSmKMris8Nx2CAyWA 3774
sysidentpy/utils/generate_data.py sha256=nGz2Z26J8FNvFxye1opLyzvf_XuhNmoyrF11xbV6-j8 3846
sysidentpy/utils/narmax_tools.py sha256=BgfZCJp0oDF51eeL9AG-0LBsoP4dYVHvXb41UI7gvlw 5711
sysidentpy/utils/plotting.py sha256=3GF4smeXQmEvTqp5iUSpt_s38njo5pGu2awsmixUF0w 3104
sysidentpy/utils/save_load.py sha256=DJH2i37bhIsTtPvYVc7Tr_O7LGbQpTmtXYILqMb3rvE 1700
sysidentpy/utils/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
sysidentpy/utils/tests/test_utils.py sha256=hqLKJwWOJNfFgFzrD0Ys49cGpfPskIxhngDz03amnns 3709
sysidentpy-0.5.3.dist-info/AUTHORS sha256=3IG3yTU7hB2ZfEIE6uRAsDkKEDAsXGIaKxac4XYT0EQ 311
sysidentpy-0.5.3.dist-info/LICENSE sha256=cCNiC063y8K9pWynhxFaye0U8HLheCNRdvKHvs36-DY 1587
sysidentpy-0.5.3.dist-info/METADATA sha256=aX5anMgs95-uktjFIIzw368_KpTg-N0UekvMq6OZTCk 20422
sysidentpy-0.5.3.dist-info/WHEEL sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8 91
sysidentpy-0.5.3.dist-info/top_level.txt sha256=_a6Pvjc_sdK9F5OixC538RUD_Cvt_MiEvwOGLsjpMGQ 11
sysidentpy-0.5.3.dist-info/RECORD

top_level.txt

sysidentpy