statsforecast

View on PyPIReverse Dependencies (28)

1.7.8 statsforecast-1.7.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
statsforecast-1.7.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
statsforecast-1.7.8-cp39-cp39-win_amd64.whl
statsforecast-1.7.8-cp39-cp39-macosx_10_9_x86_64.whl
statsforecast-1.7.8-cp39-cp39-macosx_11_0_arm64.whl
statsforecast-1.7.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
statsforecast-1.7.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
statsforecast-1.7.8-cp38-cp38-win_amd64.whl
statsforecast-1.7.8-cp38-cp38-macosx_10_9_x86_64.whl
statsforecast-1.7.8-cp38-cp38-macosx_11_0_arm64.whl
statsforecast-1.7.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
statsforecast-1.7.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
statsforecast-1.7.8-cp312-cp312-win_amd64.whl
statsforecast-1.7.8-cp312-cp312-macosx_10_13_x86_64.whl
statsforecast-1.7.8-cp312-cp312-macosx_11_0_arm64.whl
statsforecast-1.7.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
statsforecast-1.7.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
statsforecast-1.7.8-cp311-cp311-win_amd64.whl
statsforecast-1.7.8-cp311-cp311-macosx_10_9_x86_64.whl
statsforecast-1.7.8-cp311-cp311-macosx_11_0_arm64.whl
statsforecast-1.7.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
statsforecast-1.7.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
statsforecast-1.7.8-cp310-cp310-win_amd64.whl
statsforecast-1.7.8-cp310-cp310-macosx_10_9_x86_64.whl
statsforecast-1.7.8-cp310-cp310-macosx_11_0_arm64.whl

Wheel Details

Project: statsforecast
Version: 1.7.8
Filename: statsforecast-1.7.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Download: [link]
Size: 305214
MD5: 6dd2b4d8412a4a67fd58377321a9b0ea
SHA256: 6eda1b19e9230925766d2f247ab64d873af09ba0db56d8ddf2705aa78e4d59b1
Uploaded: 2024-09-19 21:39:31 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: statsforecast
Version: 1.7.8
Summary: Time series forecasting suite using statistical models
Author: Nixtla
Author-Email: business[at]nixtla.io
Home-Page: https://github.com/Nixtla/statsforecast/
License: Apache Software License 2.0
Keywords: time-series forecasting arima ets
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Developers
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: License :: OSI Approved :: Apache Software License
Requires-Python: >=3.8
Requires-Dist: cloudpickle
Requires-Dist: coreforecast (>=0.0.12)
Requires-Dist: numba (>=0.55.0)
Requires-Dist: numpy (>=1.21.6)
Requires-Dist: pandas (>=1.3.5)
Requires-Dist: scipy (>=1.7.3)
Requires-Dist: statsmodels (>=0.13.2)
Requires-Dist: tqdm
Requires-Dist: fugue (>=0.8.1)
Requires-Dist: utilsforecast (>=0.1.4)
Requires-Dist: threadpoolctl (>=3)
Requires-Dist: fugue[dask] (>=0.8.1); extra == "all"
Requires-Dist: fugue[spark] (>=0.8.1); extra == "all"
Requires-Dist: plotly; extra == "all"
Requires-Dist: plotly-resampler; extra == "all"
Requires-Dist: polars[numpy]; extra == "all"
Requires-Dist: black; extra == "all"
Requires-Dist: datasetsforecast; extra == "all"
Requires-Dist: fire; extra == "all"
Requires-Dist: nbdev; extra == "all"
Requires-Dist: nbformat; extra == "all"
Requires-Dist: nbdev-plotly; extra == "all"
Requires-Dist: pandas[plot]; extra == "all"
Requires-Dist: pmdarima; extra == "all"
Requires-Dist: pre-commit; extra == "all"
Requires-Dist: prophet; extra == "all"
Requires-Dist: pyarrow; extra == "all"
Requires-Dist: pybind11; extra == "all"
Requires-Dist: pytest; extra == "all"
Requires-Dist: scikit-learn; extra == "all"
Requires-Dist: setuptools (<70); extra == "all"
Requires-Dist: supersmoother; extra == "all"
Requires-Dist: fugue[ray] (>=0.8.1); python_version < "3.12" and extra == "all"
Requires-Dist: protobuf (<4.0.0,>=3.15.3); python_version < "3.12" and extra == "all"
Requires-Dist: numpy (<2); python_version < "3.12" and extra == "all"
Requires-Dist: pandas (<2.2); python_version < "3.12" and extra == "all"
Requires-Dist: ray (<2.8); python_version < "3.12" and extra == "all"
Requires-Dist: fugue[dask] (>=0.8.1); extra == "dask"
Requires-Dist: black; extra == "dev"
Requires-Dist: datasetsforecast; extra == "dev"
Requires-Dist: fire; extra == "dev"
Requires-Dist: nbdev; extra == "dev"
Requires-Dist: nbformat; extra == "dev"
Requires-Dist: nbdev-plotly; extra == "dev"
Requires-Dist: pandas[plot]; extra == "dev"
Requires-Dist: pmdarima; extra == "dev"
Requires-Dist: polars[numpy]; extra == "dev"
Requires-Dist: pre-commit; extra == "dev"
Requires-Dist: prophet; extra == "dev"
Requires-Dist: pyarrow; extra == "dev"
Requires-Dist: pybind11; extra == "dev"
Requires-Dist: pytest; extra == "dev"
Requires-Dist: scikit-learn; extra == "dev"
Requires-Dist: setuptools (<70); extra == "dev"
Requires-Dist: supersmoother; extra == "dev"
Requires-Dist: plotly; extra == "plotly"
Requires-Dist: plotly-resampler; extra == "plotly"
Requires-Dist: polars[numpy]; extra == "polars"
Requires-Dist: fugue[ray] (>=0.8.1); python_version < "3.12" and extra == "ray"
Requires-Dist: protobuf (<4.0.0,>=3.15.3); python_version < "3.12" and extra == "ray"
Requires-Dist: numpy (<2); python_version < "3.12" and extra == "ray"
Requires-Dist: pandas (<2.2); python_version < "3.12" and extra == "ray"
Requires-Dist: ray (<2.8); python_version < "3.12" and extra == "ray"
Requires-Dist: fugue[spark] (>=0.8.1); extra == "spark"
Provides-Extra: all
Provides-Extra: dask
Provides-Extra: dev
Provides-Extra: plotly
Provides-Extra: polars
Provides-Extra: ray
Provides-Extra: spark
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 24598 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.1.0)
Root-Is-Purelib: false
Tag: cp312-cp312-manylinux_2_17_aarch64
Tag: cp312-cp312-manylinux2014_aarch64

RECORD

Path Digest Size
statsforecast-1.7.8.dist-info/LICENSE sha256=gB3DyE5dS-4xli8pEywRLRJ96O11NvQZSkOXUWqOBbk 11336
statsforecast-1.7.8.dist-info/METADATA sha256=YzZegvA4BawSwqMwYanpeHP3jYJQ8uY1Y11Pk99WAOc 28933
statsforecast-1.7.8.dist-info/entry_points.txt sha256=Yr8W1KFPUXLCdMBDfqbxZowO-Y7mGpeIn5Qd9rwZdgk 48
statsforecast-1.7.8.dist-info/RECORD
statsforecast-1.7.8.dist-info/WHEEL sha256=Z868N0_Fq1ssfDKgnQWj75ig0pzypFewyov-H4g6Btc 153
statsforecast-1.7.8.dist-info/top_level.txt sha256=dmrJvc9xuN3C4vp4TLs_igwvAPxZseWYsKmgvvGJETA 14
statsforecast/arima.py sha256=Ffwj9-573Qu6LrsSrGKzoKKxbXdHSVJ_rNduMDMsaGA 73058
statsforecast/ces.py sha256=A6gyWrpBMWv9TchdqDGAd5ACgVVbATj-xppga3aPuKk 22553
statsforecast/tbats.py sha256=BYkUqhyjFvjjd4i0n23CJOutr81dYv5waZz1I13J81g 29092
statsforecast/mfles.py sha256=ebLQVfMUM-qS2NqXLsCk8WMnJOmfytD2kARFSnquCU0 28091
statsforecast/core.py sha256=AyE3d48QndFwxqBrLVJuS6W3lYU-2qq7a6m9lYWbNAI 63904
statsforecast/theta.py sha256=AlY47VdpWxbyiFVsDOeS94zDORQez7Pqi1uDjnz5zp4 20480
statsforecast/feature_engineering.py sha256=LPdFKqQlHNZw7vSc6dUH_JOevOEFpOZD45I3bKHdKwA 2860
statsforecast/mstl.py sha256=LDaFIFXW4_HPcK4rqDKsGNX6XCylZhRoz99DRrfi_JM 2534
statsforecast/_lib.cpython-312-aarch64-linux-gnu.so sha256=UQ-7EN03UoDqr4lQv3E67YL2yIbLmzHvDsm2mBq9Apw 541408
statsforecast/models.py sha256=4O8rw8eoBvtxbR5LRDwWjBvxCgF159Ss_ZckN-UUnuA 239606
statsforecast/utils.py sha256=fBNUmOB7pJ09CsYj8JhysidBfG6ZiaHrB3kjD1fe6hw 9761
statsforecast/ets.py sha256=Ws_f_0mm_C0Q2SFnhXIObkwzokqq1k7ir-Vhfqzpf2g 36480
statsforecast/garch.py sha256=XWWry49Rie0ScTHMq4PtM0QFHaoDtchcTx9qiQiUxfc 4373
statsforecast/__init__.py sha256=lOPA8L2Cgzouedmr_9k-uqGztLkNUt9eu4S40vwTrWc 121
statsforecast/_modidx.py sha256=Bs_xUMDVASpJ1sDURe2MABGNWCFg96eMmkVWetaVoyA 102367
statsforecast/distributed/multiprocess.py sha256=lQfMu56nJNO4kSx69PLfTdxbWOIXKS5urZvV0UijjsI 1681
statsforecast/distributed/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
statsforecast/distributed/fugue.py sha256=jKHvQoEYGzkqBwqwOEPYgRAb0o78YVvEB5I-C1U0B5o 16733
statsforecast/adapters/prophet.py sha256=RAbTT75MSQX0lfsbiYh9miJ1JPRVbIcV_LgX4je1AoY 9798
statsforecast/adapters/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0

top_level.txt

statsforecast

entry_points.txt

[nbdev]
statsforecast = statsforecast._modidx:d