skfeature-chappers

View on PyPIReverse Dependencies (1)

1.1.0 skfeature_chappers-1.1.0-py3-none-any.whl

Wheel Details

Project: skfeature-chappers
Version: 1.1.0
Filename: skfeature_chappers-1.1.0-py3-none-any.whl
Download: [link]
Size: 66326
MD5: ed84fdc33f96b61c4830e2a70d834101
SHA256: 875c8a24d79a5e855f86e4e715d6408984356473c9ab0a97c428d68fa978a577
Uploaded: 2021-08-29 00:51:43 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: skfeature-chappers
Version: 1.1.0
Summary: Unofficial Fork of Feature Selection Repository in Python (DMML Lab@ASU)
Author: Jundong Li, Kewei Cheng, Suhang Wang
Author-Email: jundong.li[at]asu.edu, kcheng18[at]asu.edu, suhang.wang[at]asu.edu
Maintainer: Chapman Siu
Maintainer-Email: chpmn.siu[at]gmail.com
Home-Page: https://github.com/chappers/scikit-feature
Keywords: Feature Selection Repository
Requires-Dist: scikit-learn
Requires-Dist: pandas
Requires-Dist: numpy
Requires-Dist: pytest; extra == "ci"
Requires-Dist: pytest-cov; extra == "ci"
Requires-Dist: black; extra == "ci"
Requires-Dist: isort; extra == "ci"
Requires-Dist: flake8; extra == "ci"
Requires-Dist: mkdocs; extra == "ci"
Requires-Dist: mkdocs-material; extra == "ci"
Requires-Dist: mkdocstrings; extra == "ci"
Requires-Dist: pytkdocs[numpy-style]; extra == "ci"
Provides-Extra: ci
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.36.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
skfeature/__init__.py sha256=0y91PW-fcytGzZxMWcdcVL1uY8YfJz4Qb4CVpB1hAXg 21
skfeature/function/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/function/information_theoretical_based/CIFE.py sha256=LMxC5HZvQJWBGfXeV17nQmRfkRVfrkW6AhjttXOOuAI 1431
skfeature/function/information_theoretical_based/CMIM.py sha256=dywyq6Sceo3jGOr43gJnsKQ2hRLF3-S6hqekxzdd0zw 3473
skfeature/function/information_theoretical_based/DISR.py sha256=rWfJ5sFK12XJBPjKlUwKg1MDzttl5XrqWkBW_KJiYxA 3569
skfeature/function/information_theoretical_based/FCBF.py sha256=Y_GH1NCJSshTUswz5o-g9Wpbbvztyyt5vxSpPPtM4YY 2553
skfeature/function/information_theoretical_based/ICAP.py sha256=GWSUvw_15XPJiZtXr44dAn4Z6il_3CHZQzw3W0S4oA0 3304
skfeature/function/information_theoretical_based/JMI.py sha256=68g91SXRUzRsD22Aid_P9oydT4Zm5LdLtcJsWjvF_wA 1540
skfeature/function/information_theoretical_based/LCSI.py sha256=8FTdmdrb49ZNoBolcVtspnekc4N5x6oSddpjDeNm9HI 4147
skfeature/function/information_theoretical_based/MIFS.py sha256=j_a2lTVpkEOheeBIsYR83m_bPAWd4U-UEN9GIji0S-s 1642
skfeature/function/information_theoretical_based/MIM.py sha256=qpH_goKOsLbKhWXIjP4qhfjYTh3TVWu0jHJhRtwRpD0 1533
skfeature/function/information_theoretical_based/MRMR.py sha256=V_DYbaML7jg9iwwZu6GxK17zQQcLHOE1oqLA1QiZzK4 1561
skfeature/function/information_theoretical_based/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/function/similarity_based/SPEC.py sha256=MTQH8L0cJXEJdPspLN08hHnlBf_3xQNpisZG90tXoYY 5570
skfeature/function/similarity_based/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/function/similarity_based/fisher_score.py sha256=IPG94Rrf6k3pq8Osb95StF2qU4kY7FxOVxQBjrNGqi0 2382
skfeature/function/similarity_based/lap_score.py sha256=4ozhG4s2IFrA9G6dmJPGIc5LYzcSS3EStF_B1m3yNhc 2409
skfeature/function/similarity_based/reliefF.py sha256=M9FOlWcyH8MRpTKTnCVD3QRbTsOzRg1eUt4321r96AA 3899
skfeature/function/similarity_based/trace_ratio.py sha256=X6mA_muVqKTWUuglQ4MIHdzrWq8hFb5SIAqfaCXXXMg 4761
skfeature/function/sparse_learning_based/MCFS.py sha256=Dp4jFiHYSuf3xclTE0qEi10rA1TbQCNHINUhjyM_vKU 2485
skfeature/function/sparse_learning_based/NDFS.py sha256=VJ_in2lremgUMSncVqJ5ar7q3uxSZoX7Et-it3YO_6Y 5511
skfeature/function/sparse_learning_based/RFS.py sha256=6NGGnTBpnLgIeu8-Pb64f8K3bu-2ADZdOrYhG_LjdrI 2855
skfeature/function/sparse_learning_based/UDFS.py sha256=TzOzIL4QGWj3F_Km0CtYLABGUI6AFtB9a_GluOn1Y90 3768
skfeature/function/sparse_learning_based/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/function/sparse_learning_based/ll_l21.py sha256=2eaITXAKeG1mxkvTSAhry55oh6HHhTIrBeztfkw5D7A 5948
skfeature/function/sparse_learning_based/ls_l21.py sha256=tTyz_oaC-y_SFiLcVsM9Zak6SHKAMu5-bUq1ACF1uG4 5195
skfeature/function/statistical_based/CFS.py sha256=DUjqphYt5k7RKfjGHqW68SQRwiv1JP3LbDaUeaHMiMs 2467
skfeature/function/statistical_based/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/function/statistical_based/chi_square.py sha256=41_YlahtK6PjhrYnDWcHTyueK95B24HP9mCfINf9Nk0 1134
skfeature/function/statistical_based/f_score.py sha256=go3Lp7geX6-tI2F5teDHIjwaYEP9mDxuC-7pP1e3dSU 922
skfeature/function/statistical_based/gini_index.py sha256=mOmjVIPGNkzIlPHLFieFhyAHFl5jnbMAidLdRlULs6U 2767
skfeature/function/statistical_based/low_variance.py sha256=n9tzIhxKvftkt6kLkOoh6zFEwpn2k22D9Ehj6IZnt6A 711
skfeature/function/statistical_based/t_score.py sha256=kAaAnUHdRmly9DSm_2-vlCEhETvKjVqykOJqx9KUsiA 1851
skfeature/function/streaming/__init__.py sha256=yRJSomeii-3HKtQMfhGEn1krtSfKn8HxGs8j8hIqdNA 24
skfeature/function/streaming/alpha_investing.py sha256=f9UoVqmHUdyOXJfc1SDsPGlCCJZHM58zrmjUH6Y3nFg 2579
skfeature/function/structure/__init__.py sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs 1
skfeature/function/structure/graph_fs.py sha256=X10daQ7VfE6cyXjiaD02szD3xaV_JMIlE1FzNp8Xym8 4028
skfeature/function/structure/group_fs.py sha256=WVh5tMvf8s4MBTTYpfuU4-6HK-stURgAv2L2dn2N9rs 5184
skfeature/function/structure/tree_fs.py sha256=DEygyjjXXZ_09yufMrMwh1SWzXoFEnH9c92pMOhYJf4 5125
skfeature/function/wrapper/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/function/wrapper/decision_tree_backward.py sha256=2QHtmKFk99L7uB2_DmwSh749kpF0hCxDqQfelR3cAkY 1772
skfeature/function/wrapper/decision_tree_forward.py sha256=EPf9lD3rFRfYhwUCHaUmDeTZHplBBsisbl_QG5E43GE 1738
skfeature/function/wrapper/svm_backward.py sha256=efQ03MSosovlO73zlbwKneR3hc0djDMvaKgI8NAEy20 1702
skfeature/function/wrapper/svm_forward.py sha256=meSW95RzDkS3SG7W9r78idId2v9loru3sBXMvCnrwNU 1670
skfeature/utility/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skfeature/utility/construct_W.py sha256=GwgKY2yBWKtrmiF-q6vEF19F0odOMwRV2uO_HWX7UDg 17615
skfeature/utility/data_discretization.py sha256=QbmESkBLOZs_zfXZ98QX7mRDuj5yCLGgIH4lmUqGCDo 915
skfeature/utility/entropy_estimators.py sha256=RTFq5SKMZ1j0K3NEOaMfKy37MgJizLYmPg5terHiYbA 7308
skfeature/utility/mutual_information.py sha256=Bqi9xcb6OLeuX4lzMEEzNTawsOt61W_uVm9pwr5zQfQ 1435
skfeature/utility/sparse_learning.py sha256=Ny3wqS6Xox2WwcsGwfeIgNb5eunX9pXY69Q1dPSiS24 5055
skfeature/utility/unsupervised_evaluation.py sha256=zPmzouXPs64HJzSpztWezFTccauGOqTqgHbdT0iya6s 1886
skfeature/utility/util.py sha256=KSvnUwonUre5Nqs-nCyEyeswONvHbLSAlhgxCUa8sE4 1396
skfeature_chappers-1.1.0.dist-info/LICENSE sha256=wDzqAntLQORAL6vQhVdzZyfsPVvFStZKtkct5DIZjK0 18047
skfeature_chappers-1.1.0.dist-info/METADATA sha256=YWZek_fEhHQLjqNfFVZcHmRrcVJCwGqcNnF4nfDwcfU 926
skfeature_chappers-1.1.0.dist-info/WHEEL sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA 92
skfeature_chappers-1.1.0.dist-info/top_level.txt sha256=BSjKf6wZJ5DmBt4JRW9ayjf9g6wlRGufLTcmtT3FSrw 10
skfeature_chappers-1.1.0.dist-info/RECORD

top_level.txt

skfeature