sfdc-merlion

View on PyPIReverse Dependencies (0)

1.0.0 sfdc_merlion-1.0.0-py3-none-any.whl

Wheel Details

Project: sfdc-merlion
Version: 1.0.0
Filename: sfdc_merlion-1.0.0-py3-none-any.whl
Download: [link]
Size: 522815
MD5: e467a7a42b10ae1be5c3446ba1e72dd8
SHA256: f4a62b1a5010948a2bc35059ea130c4159d4b8069d70003fdadf83292a587747
Uploaded: 2021-09-21 17:45:16 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: sfdc-merlion
Version: 1.0.0
Summary: Merlion: A Machine Learning Framework for Time Series Intelligence
Author: Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, Amrita Saha, Arun Kumar Jagota, Gokulakrishnan Gopalakrishnan, Manpreet Singh, K C Krithika, Sukumar Maddineni, Daeki Cho, Bo Zong, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Steven Hoi, Huan Wang
Author-Email: abhatnagar[at]salesforce.com
Home-Page: https://github.com/salesforce/Merlion
License: 3-Clause BSD
Keywords: time series,forecasting,anomaly detection,machine learning,autoML,ensemble learning,benchmarking,Python,scientific toolkit
Requires-Python: >=3.6.0
Requires-Dist: cython
Requires-Dist: dill
Requires-Dist: fbprophet
Requires-Dist: GitPython
Requires-Dist: JPype1 (==1.0.2)
Requires-Dist: matplotlib
Requires-Dist: numpy (!=1.18.*)
Requires-Dist: pandas (>=1.1.0)
Requires-Dist: pystan (<3.0")
Requires-Dist: scikit-learn (>=0.22)
Requires-Dist: scipy (>=1.5.0)
Requires-Dist: statsmodels (>=0.12.2)
Requires-Dist: torch (>=1.1.0)
Requires-Dist: lightgbm
Requires-Dist: tqdm
Requires-Dist: wheel
Requires-Dist: pytest
Requires-Dist: plotly (>=4.13); extra == "plot"
Provides-Extra: plot
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: AUTHORS.md
[Description omitted; length: 13868 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
merlion/plot.py sha256=vuvvOEXXWHMRcUr6b2ZG-6Q9wl5xQODd-3vTm1YLj3A 22298
merlion/evaluate/anomaly.py sha256=0pPdAvh4EVprhfHsaYUmj94NfstVLngQbSHLOk1trAE 19255
merlion/evaluate/base.py sha256=u5bzB92kKXFZv9KhyBpBfvtCd9inkxRMxpdJ8Bt_DlI 9308
merlion/evaluate/forecast.py sha256=qPugZtxRwlZRyVg5lD1P6w7NnJJ9lyzx1Krwtw22d_I 14709
merlion/models/base.py sha256=yh0TijVAi18iWUz0sO75LGWHOjqaLivTZXe0ENZIJ7Q 16009
merlion/models/defaults.py sha256=JCDK5j8aswFSSgOFDDermZ_muTUMIIbVcH1eUOoGyN4 9299
merlion/models/factory.py sha256=t4grhgM00RgCmScv0UkPKx5t074a33oKKoltWvQ35es 4218
merlion/models/anomaly/__init__.py sha256=3Zc5XNzSz6G_y0ZnrF9EHp1ew2Rp9M2nRbaqbOZXfcY 3314
merlion/models/anomaly/autoencoder.py sha256=YHaE_rIbWJiwYml0ckDSTwSAe30CN-Z1_i4YovbQIis 9340
merlion/models/anomaly/base.py sha256=ivI50Ve8Hy7ZahZp-ES_VhKLoqbMlNFkpBC9FhGfvOo 13293
merlion/models/anomaly/dagmm.py sha256=gVE5fafADBObBjgEkFYqgzqsHkKpemAGIYa0g97ezps 13970
merlion/models/anomaly/dbl.py sha256=BJ2UGd7C27GxJDfDF6nkPGfdH936iSMpHdRR_K7m6yM 14336
merlion/models/anomaly/deep_point_anomaly_detector.py sha256=3Bfr-tX80eXHWrc-Jl_Y47CM_z8pLm2bMeQ9pLbGWmM 7367
merlion/models/anomaly/isolation_forest.py sha256=1iA38DRCLAhRP7CMkUnuGWPw_aP3A8sOcbiBNy9w0mA 3352
merlion/models/anomaly/lstm_ed.py sha256=eW3XqcyJzp5eyUqZ1xkturo5wJ_uD0kdb2JDg4AcMpM 10024
merlion/models/anomaly/random_cut_forest.py sha256=yVYE1iOMCQXri2fe-sbyqYt7z3OadIgCXxPv-a4pLd0 8108
merlion/models/anomaly/spectral_residual.py sha256=XP3c_gGTKIVP3X8xWwuzjS7PltfZ_lgTzuA2eJTSUV0 7192
merlion/models/anomaly/stat_threshold.py sha256=4yCiDjqpfY-ES8AzyKnBLlsJrlrpxGFWdux2OPD7l7Y 1789
merlion/models/anomaly/utils.py sha256=qUvmSj-vr4onK00Fj0Kb5RHIbkTIdpgiGyOWvGKOiS8 1824
merlion/models/anomaly/vae.py sha256=xG7QXSpSGqhgtB-hNGoAtdjjAbodn1CzHra_k7NHtKc 12520
merlion/models/anomaly/windstats.py sha256=VmnrQPNzk71vjm22cy016goWxsV0_tJwvd5nMr2TrzA 5598
merlion/models/anomaly/zms.py sha256=hM4QqW3x3cBjWjGGrZbpU7YY6SVmesUklwFaqMLzfeE 6761
merlion/models/anomaly/forecast_based/__init__.py sha256=5AnqixSfdx4Mon_83ktFnohMknjAXpC2eSgnhOLviyY 752
merlion/models/anomaly/forecast_based/arima.py sha256=_cpzKxFP943QHB9Ph29DkdgiiH-ywkRGziODdV1tS7U 801
merlion/models/anomaly/forecast_based/base.py sha256=F55pdjb-4qnhj1ealZb4GoRESy_t3fI0XwGne3kfQ6k 13875
merlion/models/anomaly/forecast_based/ets.py sha256=QysH1g-0mne-d1uX8Cg8v4eaWvArocLaSstbgf1dp48 1042
merlion/models/anomaly/forecast_based/lstm.py sha256=JIdWFHekjLQpchkkuqlRhasq7_Y54l1-pKe8UmYh8Bk 850
merlion/models/anomaly/forecast_based/mses.py sha256=Z0tm072eNMCtDjrViooFsuPuyrbranMwhCFuY2nbafw 2344
merlion/models/anomaly/forecast_based/prophet.py sha256=TwFn2kkjywVcPnixwvzuzAwPHypqedRbAMIstbyPb7Q 894
merlion/models/anomaly/forecast_based/sarima.py sha256=pQrt8Gfir23k2q53lsY48qBB60KNRHzt8b19Oxo8Z5M 776
merlion/models/automl/__init__.py sha256=tRPFN-YwgnPac-wnrL_LqFnFP-T_qSaGSHiSqxJ7-8U 256
merlion/models/automl/autosarima.py sha256=UKSVf4NsWK4HCFJmactLoPi_c8GoCQn_WgJBu9VrZgo 16272
merlion/models/automl/forecasting_layer_base.py sha256=hALPiGkab63djCHxz0J2L_nIdw7ov-SVaFIb2fRJrMk 4515
merlion/models/automl/layer_mixin.py sha256=FKrDk08zUWGMBLS8PqqrXhm_3kS9YJUYbS4VEOqB2Lk 2082
merlion/models/automl/seasonality_mixin.py sha256=LUXMT1MoxIfRo6-2PNesDoQGBw5hztjA35auARao5f8 2389
merlion/models/ensemble/MoE_forecast.py sha256=aHMAGXZPlprkqk3dBYy8NTR03yN9j3NSZBRFQcY2Jlc 43625
merlion/models/ensemble/MoE_networks.py sha256=2XZgp5WgUw9nvETyxNOaGCwpeudlFOIUyPkL_WgSbXA 7083
merlion/models/ensemble/__init__.py sha256=cAc4nze-d44PeIJztAD050WZx5lOBYlby9P8Y3zXtx8 279
merlion/models/ensemble/anomaly.py sha256=9GI32RLWASIEx8EaL535HTA4aIN2DbZq0hkIos0V1aY 7429
merlion/models/ensemble/base.py sha256=UH9SsqxE4tfT5lY-SgpZh32v16UKAjRvy9_Ed1K5e_I 11452
merlion/models/ensemble/combine.py sha256=cmFABlfWDCFMEnj_MecgprNmLpZN9ovcoxGjQ6UzCeQ 12908
merlion/models/ensemble/forecast.py sha256=4XAMwaRN_vxhpVEuDDRBbYdbIVmIrm435JTEr97uYPM 8857
merlion/models/forecast/__init__.py sha256=pqqyiy_gG3mVbJNfUrd2tARaXElJ2MFHYcsNFf1d7ZU 1844
merlion/models/forecast/arima.py sha256=BZ4wJQ3h6y9t-ytlkDQxELQ6uNq18YnipKA8iLHeeb4 1786
merlion/models/forecast/autoregression_utils.py sha256=_znUqHyV5w6KR7ze2N-ymB8_gXumjNpCPqeweOIYU0g 7003
merlion/models/forecast/baggingtrees.py sha256=NU_ztWAF__IWA_cj9lJ4OitGmNxp8E0-XcoduljBLjU 12619
merlion/models/forecast/base.py sha256=sIK_fu0xxxnxwEWAybX4WthsEUV8hIfokIQcukM16J0 18397
merlion/models/forecast/boostingtrees.py sha256=rGH_7x-p4rz9HaLZReVjLkzFiGaqm684nH4g9Sj8Fas 12021
merlion/models/forecast/ets.py sha256=eMZvH20OPD6QTbh2zYka6mvnh2c4TNlyDhElzQhqAjg 11711
merlion/models/forecast/lstm.py sha256=T1eGafsZSPeg618XEw2mHE5onNYd5JJCrar99uiqblw 16749
merlion/models/forecast/prophet.py sha256=m9uZUlvTC5oU9QvHF2G3PZAOMPM8s1iEfbKsAqYbTZY 8845
merlion/models/forecast/sarima.py sha256=mBynFBdCGUj5HqVjJntK70xkCnuwYj_6MaWCGpqGpwo 11440
merlion/models/forecast/seq_ar_common.py sha256=oHv0CfzeN7UnDx9QBZs_ef9Pd8i6agextD4RinUhqBE 11425
merlion/models/forecast/smoother.py sha256=jLzu5ZsI6H82iMcPMFogTYeFqt_hdp05yaWnfbcYZwQ 30884
merlion/models/forecast/vector_ar.py sha256=zcCS0muYUYVWNzQETRAQLowd4eL-9EkdLCHUPtvNKDE 7256
merlion/post_process/base.py sha256=-9n1w6zzxwep6G3pdOD_Jw7854g3mGg0EE8dQOa7e7I 1755
merlion/post_process/calibrate.py sha256=rDPzNzSAp0p5WJtdJkWn7S1gC7hWoiGQqTlLoTBuXs0 4882
merlion/post_process/factory.py sha256=YUHkEMH4WJBvvrXMqG5j_xKlrMZNZh-V0KKY00mwFm8 1283
merlion/post_process/sequence.py sha256=NxxA2sqR8JdhhV2Gq3kcSrBZ-Y-orYS93ZLgiMr-ZpI 1730
merlion/post_process/threshold.py sha256=3AgvCHLEZICi56pBtrJM68O52sV0TSybUPQV78OSynY 16626
merlion/resources/gson-2.8.6.jar sha256=yPtIOQVNKAswM_gA0fWpfeLwKOuLoutFitKH5Tbz8l8 240255
merlion/resources/randomcutforest-core-1.0.jar sha256=C7pqyYSWIIiO0r3xLsnNYAsJV7mQrrb7J0YOJVcz6dI 104612
merlion/resources/randomcutforest-serialization-json-1.0.jar sha256=aRGOCA4Tf3L2LpXrRMDPZy67eVKaezf5Sadl_6UbMRI 9158
merlion/transform/anomalize.py sha256=WVHTXeB9ecNCzzaRPmfUENcB0XKs3miXfcP4E5eC9Hk 11304
merlion/transform/base.py sha256=lroP7Hun6oufKrrX771tUbmy_4ldcCH8VCAhrLI231I 7010
merlion/transform/bound.py sha256=HUe-tv1Nv4rN-sHVa7P2JCVv22fm2ljCTL1aSkwxZSw 1452
merlion/transform/factory.py sha256=XdJVERCPTsIVtTrdR9SXqNzyv7uPVj3F0EeXgt2YuaY 1776
merlion/transform/moving_average.py sha256=mjdFtRtXr4PDSRgeLw4PLMLQW0ZY7XpDf11jbfpjsY0 12205
merlion/transform/normalize.py sha256=ZZ9qtjZz2C3Rs0wicz4bHTRwPv4KGq1OTdTg1X3t6DE 6639
merlion/transform/resample.py sha256=DizDt954mra2eo_G_qflv4G7urM3ncAvcpz-_UrEzFw 10295
merlion/transform/sequence.py sha256=BQVdvY6fpgS9nTC2Js2KuraeUeU9hpqth-3hsux-0NQ 5856
merlion/utils/__init__.py sha256=JeqjIs43RfSCKu2IEcqZMyPDE6TCFHcsfKauSrSZfSw 348
merlion/utils/autosarima_utils.py sha256=X2wu63ioEnHQmn6hAlaPldRdvgQQqKKaZAiFyoyEFe8 21429
merlion/utils/istat.py sha256=QeujJ3gZW-3hw_10EcOHWUHsZRTeg5v3U-1eT_WTIzA 7235
merlion/utils/misc.py sha256=6UTjvJhXyd_lMASqXcX0-zPdcKzccWo8NLh77j96icw 3698
merlion/utils/resample.py sha256=RffvjU8hUsWmjEIk81RZ1ZYkZyE9B5cdhNABnDlZwm0 4239
merlion/utils/time_series.py sha256=6BWvteKUuHWq-ddfXsqEVAGvBsraWLc-1iHQynYLcdY 42124
merlion/utils/ts_generator.py sha256=ANsY9bfyzFI3N7UvQbxHumlfkU-ymoV1pvgnLyzLvX0 8080
sfdc_merlion-1.0.0.dist-info/AUTHORS.md sha256=xOXVDztqRYGnQ7s7Sr1biNRQ3XTya50XSIrRvJVQGgo 320
sfdc_merlion-1.0.0.dist-info/LICENSE sha256=RjfsVxZgMWnenZblSWYe4rZi5Yr3-j0kY8-gY-OTdLc 1482
sfdc_merlion-1.0.0.dist-info/METADATA sha256=sf6XlGScK6ukvoHgdvh5JJg20x5MboVE7jMX9P_VBgU 15345
sfdc_merlion-1.0.0.dist-info/WHEEL sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o 92
sfdc_merlion-1.0.0.dist-info/top_level.txt sha256=xf8O0Iprgx-HSGWFEjmSxsbxT16bRiKQvuV8y-TRQCA 8
sfdc_merlion-1.0.0.dist-info/RECORD

top_level.txt

merlion