serval-ml-commons

View on PyPIReverse Dependencies (0)

0.1.5 serval_ml_commons-0.1.5-py3-none-any.whl

Wheel Details

Project: serval-ml-commons
Version: 0.1.5
Filename: serval_ml_commons-0.1.5-py3-none-any.whl
Download: [link]
Size: 176750
MD5: 8d45961013503338b6f26968d32d49ff
SHA256: 935afb3c88449f34188bda61a18637147d4d4059f6b4170cd3994e3fea2c3b6f
Uploaded: 2023-08-21 06:53:08 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: serval-ml-commons
Version: 0.1.5
Summary: SerVal Machine learning commons is a tools box that ease the development of ML experiments at SerVal.
Author: Thibault Simonetto
Author-Email: thibault.simonetto.001[at]student.uni.lu
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Requires-Python: >=3.8,<3.11
Requires-Dist: category-encoders (==2.6.1)
Requires-Dist: comet-ml (<4.0.0,>=3.33.6)
Requires-Dist: einops (<0.7.0,>=0.6.1); extra == "tabsurvey"
Requires-Dist: h5py (>=2.0.0)
Requires-Dist: icecream (==2.1.3)
Requires-Dist: imbalanced-learn (==0.10.1)
Requires-Dist: libzero (==0.0.4)
Requires-Dist: numba (<0.51.0,>=0.50.0)
Requires-Dist: numpy (>=1.21.0)
Requires-Dist: optuna (<4.0.0,>=3.1.1); extra == "tabsurvey"
Requires-Dist: pandas (>=1.1.5)
Requires-Dist: requests (>=2.25)
Requires-Dist: rtdl (==0.0.13)
Requires-Dist: scikit-learn (>=0.24.0)
Requires-Dist: sdv (==1.2.0)
Requires-Dist: tables (<4.0.0,>=3.8.0)
Requires-Dist: tensorflow (<3.0.0,>=2.12.0); extra == "tensorflow"
Requires-Dist: tomli-w (==1.0.0)
Requires-Dist: torch (<1.13.0,>=1.12.1); extra == "torch"
Requires-Dist: torchattacks (==3.4.0)
Requires-Dist: transformers (<5.0.0,>=4.29.2); extra == "torch"
Requires-Dist: types-requests (<3.0.0.0,>=2.31.0.1)
Requires-Dist: uuid (<2.0,>=1.30)
Provides-Extra: tabsurvey
Provides-Extra: tensorflow
Provides-Extra: torch
[No description]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.5.2
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
mlc/.python-version sha256=wm0DpMhOOZrBjNHR1ORwBcdBzW4llUnFgfkHSkZKG7g 7
mlc/__init__.py sha256=kUR5RAFc7HCeiqdlX36dZOHkUI5wI6V_43RpEcD8b-0 22
mlc/classifier/batch_classifier.py sha256=P7t5NOOZk29H85B77ZSIHFnX2GE1wQwAusXGq-Jqmr8 733
mlc/constraints/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/constraints/backend.py sha256=NCPezutUuvx3YWhw37G-cwf69kW2dqp2HGqiTRBCW2A 1504
mlc/constraints/constraints.py sha256=EQn_7MKICwp9QB9pVk_xgotlnhqhtKlqMnhmBaXaNIQ 4003
mlc/constraints/constraints_backend_executor.py sha256=SkhY9S7qo62mKWwtFn5_dV7MNFthWHo9T_AxLoCVDcs 5476
mlc/constraints/constraints_checker.py sha256=XqBh_wZlH-Byvsz86EOsIS9fhy8a4S8kCrATiNo2w3k 2745
mlc/constraints/constraints_executor.py sha256=KgZVkDYlWiBMoILy0jsJGSSFHYx3mtGeXeXf6E3foxw 18699
mlc/constraints/constraints_fixer.py sha256=8bKVC5Ch4vNEU3ICpIJyHI9pYvi0hhgeq7DlCx6Mq00 2803
mlc/constraints/constraints_parser.py sha256=xMgW8p_oyD29BwSxXY0ozzcwfi0BkAW0d7vOdz3js4c 8314
mlc/constraints/numpy_backend.py sha256=kTkRIzNwAQ3KoEv9aX8ZWzsX0v0yY8PKFZKOfsNL2CY 3604
mlc/constraints/pytorch_backend.py sha256=T5bj2x93OZjoN4FTvOFVX11xKpXG_PLqe97SAtrZJx8 4520
mlc/constraints/relation_constraint.py sha256=1wtGUkmPaliCt5HSGKBAx0b1_9XhMuWmzSY0xujf9kc 4289
mlc/constraints/utils.py sha256=IVTlCJsspMsGbozYX7WagB79pMPc3bHA8jLShIUlRFU 683
mlc/dataloaders/__init__.py sha256=nNTcQtsGi3sUpsVcurnVVEwncWmBqTnhzKpP1Ij9nsw 897
mlc/dataloaders/adversarial/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/dataloaders/adversarial/madry.py sha256=519ST6OcZ6k0P89Ah76dq4zCrimt-uHwKcCQzpPoksM 4024
mlc/dataloaders/dataloader.py sha256=FUtSeT0yuQEpWFD7jic5ch7e-jf5lhGRF_sM8QaO9Vo 340
mlc/dataloaders/default.py sha256=KLqRnjsxal6iCKHKh5rzX2eWLe8xxGG3d0JckO0ThIc 1603
mlc/dataloaders/distribution/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/dataloaders/distribution/copula.py sha256=AFnuKJcIe-E9gMnXCEbv0EPuo650KhGac0nb2n1EHKo 1697
mlc/dataloaders/distribution/smote.py sha256=XOF6AFsWMHO0TlbFemIBeoEmRFU9X6l68Pv1EEjrtbY 1543
mlc/dataloaders/fast_dataloader.py sha256=i8K6DJBbsaehBuyYlCYIA9gouPKVlrbtgGGxKBqIZ8Q 1764
mlc/dataloaders/generative/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/dataloaders/generative/ctgan.py sha256=0YsiGgQEI5ScCXEnbVPRSAs_M5LdQRpKO3ylMRoBzR0 2344
mlc/dataloaders/generative/ddpm.py sha256=yLVynWz_zhMxY-43ELGa37j9cn1pXi4tMXZfY4lP9Ew 3384
mlc/dataloaders/generative/tab_ddpm/__init__.py sha256=K7dPJ7tajbaPkYsNzR_zcrEGKD568IQxb1MPvpE_Mi8 85
mlc/dataloaders/generative/tab_ddpm/gaussian_multinomial_diffusion.py sha256=RFptOz3y5KoKmqFOqC_4il-XxBGJ7zPwaX9_gMnKn7s 36431
mlc/dataloaders/generative/tab_ddpm/lib/__init__.py sha256=aALRgCgZ2fkhv_8-w2lSkD0UWwlNWbwP5rFZFyBJ7-4 247
mlc/dataloaders/generative/tab_ddpm/lib/data.py sha256=cbr_lI8xuZGKxjus5pKEfd7Dm_5jMFkSGxBckUNlcfM 25243
mlc/dataloaders/generative/tab_ddpm/lib/deep.py sha256=VFJTARgIUdJ-DM0PrZ-m9FmHUDOCPvUMSNCcUwpRExk 5328
mlc/dataloaders/generative/tab_ddpm/lib/env.py sha256=jpwwyVj7SNkm8UJkOxnsmoT4En4IIXpf16pM9VdfDoE 1016
mlc/dataloaders/generative/tab_ddpm/lib/metrics.py sha256=IUhLEcZOH-nKTNBtvheg9abjv1-GPAbdZUA9w7klzlw 5425
mlc/dataloaders/generative/tab_ddpm/lib/util.py sha256=SnCutX3epnc0ZXS8P3o3MOykYueSc_YMQgS8EFDKTe0 13347
mlc/dataloaders/generative/tab_ddpm/modules.py sha256=5UiBRsvG_1W1qtkD9fdc_VfoipvzCCrpUPn14KZQ-GE 15713
mlc/dataloaders/generative/tab_ddpm/sample.py sha256=5fxyjPospHHrLVeQeVROTcjkaQgRwUyxk8jFqFRPblY 3847
mlc/dataloaders/generative/tab_ddpm/train.py sha256=7cCjjKmeDxJ_lMTcXHOPACnHh8l3yc1VJY9XCbT2HL4 5177
mlc/dataloaders/generative/tab_ddpm/utils.py sha256=XbeuczZwzyZ6yoGBvlZMR4AOyd2r9JoWhP8vS6xwYTw 5235
mlc/dataloaders/generative/tab_ddpm/utils_train.py sha256=fJWxPvuvcsl-kD-fozHQH54gU8Pi-E4d4nnl8Vn0kBE 2902
mlc/dataloaders/generative/tvae.py sha256=LqV2Sz0npArYMmrEa61o1yqS2bqKEu8IEPa8UsqJSQc 888
mlc/dataloaders/sdv.py sha256=tVW-JAim8NZgnavCF7OW9sgw6xTzd397SsUw6Oup68I 653
mlc/dataloaders/semisup.py sha256=J-Sh_E0jWgGuauY2_U3ik-VmAXFyro39rpWWHrfATVM 8380
mlc/datasets/dataset.py sha256=kECsPI0q1IqWWK5OCyePAJ_n37ZJNJGAzwgM-LBGgyQ 8483
mlc/datasets/dataset_factory.py sha256=VAIszzcIew9ownGvcKHq1U-rOE7XXzSsVhcAwA_sI7g 2820
mlc/datasets/processing.py sha256=sCeu2N5v8k2sjy072Gq430gD5gHt69Jec5igYRQXcmM 933
mlc/datasets/samples/__init__.py sha256=FWHXv_srJDobhec1sej_lFyiIer4N2LjRJI2g1nrqfs 1071
mlc/datasets/samples/airlines.py sha256=W99GZDdkwApMfHe7rQquEB4BoawrQ1HIYA3LJffaO0g 1657
mlc/datasets/samples/ctu_13_neris.py sha256=AncHZXrtw5ct9Arr5HZy9rjNxIaJzO7-B5-kNJtitXQ 5219
mlc/datasets/samples/electricity.py sha256=sClk2bmXdApvhax674rphrDf4EItvRtT6oc1cfZwoAM 847
mlc/datasets/samples/lcld.py sha256=oLERZpDJlzGGRrDxvpK7GqT8nT6u0DADPegJNV5cZdA 7364
mlc/datasets/samples/malware.py sha256=e2g4Yl3QY67CT_HTYCcVrz47SLjaVGtlr707GBGvn5k 3540
mlc/datasets/samples/url.py sha256=UiI2fjD-Lk7tYeDKy7A3Rbnhz6x_Qm2ADPmH5jFFbsY 3602
mlc/datasets/samples/wids.py sha256=rmHUZvYhvM1l61XgU814IhqOhPVtGWYqXkeqh5Vv9CY 2626
mlc/evaluation.py sha256=4uErehEXc2tPJUfJ0dRRHcLaKLTG2FY7B5sZbsFRPXs 821
mlc/load_do_save.py sha256=ApSYw5fHUOMxxJ-ygkoh4NCVBjF-SnMNeF5Pkj-DfF0 1962
mlc/logging/__init__.py sha256=O6TDsQq9w9Icohetr6P4Uhy4svDuyE-1iEwOuwpvGHc 2208
mlc/logging/comet_config.py sha256=DjQk25H0GS5EL55VTGFvxM2_cU9K0Wy9a7oKS5nkcF0 95
mlc/metrics/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/metrics/compute.py sha256=NZhBkLOa7jjakegrPiKzEjhrHa9m2uEvO3uJegg0Ec0 1839
mlc/metrics/metric.py sha256=Pql_04w9vrixHYEIiiAhjLBQTrqQkVns2ib-ixYLYFA 258
mlc/metrics/metric_factory.py sha256=m9-EpLEtDmv_fQTLdPwFv-Dsnxsu5nbsOaU3fJxsjXg 811
mlc/metrics/metrics.py sha256=z3mQT7Cf5FgPQCFNp7wvCObWB6eCnluIfLupYoz60hw 2803
mlc/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/models/model.py sha256=THf8pGFcCHp1VuRzxHOwQ5ljPWVLnSoXSZ8Uot-6oJ8 2812
mlc/models/model_factory.py sha256=eOSSFW6WtD2UB6s5iKnZEfAcNObAVmomKfrVPzJX75Y 825
mlc/models/pipeline.py sha256=abIGRIfXVWBAUU8HzwC5t6d2Rds12GLw-72TNXdS6IE 1672
mlc/models/samples/__init__.py sha256=JoApMbfcUrJ6-cl4900eQeqCUaPYzc_pnMbN5_hvAxU 927
mlc/models/samples/lcld.py sha256=zvZlCufYYsPNJYz1lhS2-pMzwWOs-UQw1kbg4cZb66M 810
mlc/models/samples/random_forest.py sha256=TnFMirQqM1iR9nbJwfrRC9JYwW9kmBYQHMEHLeLLI3k 4429
mlc/models/samples/sklearn_default.py sha256=VYcJ3Ldyw5pO3h3p_1HruucoW6xYPDp9I63_zmQKmE8 3359
mlc/models/samples/tabsurvey_adapter.py sha256=dJldB6ooaDEMgcH9Ye0ZjftbtqIluNbUv8uki6gonDc 815
mlc/models/sk_models.py sha256=q2GYQNBdVFghNFqD0OFrbms5FgaIRw1iXrSI2KQlFRo 368
mlc/models/tabsurvey/__init__.py sha256=b-J58FeJEHlP8ZvuAIDIlg78VnHyXFDIrq7gg4ZOAPc 554
mlc/models/tabsurvey/deepfm.py sha256=Rs5SxwhNosPnXL8nw6shoWs94gNGbjxMutjs04qKh4E 11045
mlc/models/tabsurvey/deepfm_lib/__init__.py sha256=4tSDtqrp1u-mav_9ttcMBbMuMECNR-Jw5B5jO3s5Sq8 65
mlc/models/tabsurvey/deepfm_lib/inputs.py sha256=h_-zPcp21Hsu749JuLq1xa3l_FQ8Zd38wSEx-5fRlWc 9517
mlc/models/tabsurvey/deepfm_lib/layers/__init__.py sha256=KUPB-DV4yYfOO8MXiKqNeUhPqOB77x2rjU2XLMKyh40 101
mlc/models/tabsurvey/deepfm_lib/layers/activation.py sha256=0w54G1-mvtMPp5pnKp-XKVuempI8nOc9x5nAKNjw77A 2906
mlc/models/tabsurvey/deepfm_lib/layers/core.py sha256=qLla8aYEl7E_vbyhx3I-EXo8Te7YhhtXKlfrxFgqEhE 7093
mlc/models/tabsurvey/deepfm_lib/layers/interaction.py sha256=uSzbkLrosA5LNht_l5icj7Ihqp8o8gHF4vLOSCVcG4I 31911
mlc/models/tabsurvey/deepfm_lib/layers/sequence.py sha256=nm4llgNZJePDAqatv5KwKUXNydU7oX0HGTUFKIQ0vb4 12643
mlc/models/tabsurvey/deepfm_lib/layers/utils.py sha256=YRskCBJxrWQk_NDDz84qeYIUSb5bb1panZii6Z9qqKE 2013
mlc/models/tabsurvey/deepfm_lib/models/__init__.py sha256=F-a2fwrds6a7goecUX-lG3kBQ9moaKUkmVs4TlB-bIw 27
mlc/models/tabsurvey/deepfm_lib/models/basemodel.py sha256=RBUvRyvjPHRoD9fq4p9ZU0zix2b3CkQbYvyjz2rvhvA 24781
mlc/models/tabsurvey/deepfm_lib/models/deepfm.py sha256=QgxN3jDau4Fb_AH_m9BU1ZLNWem7fGQ3KIjYqmF3yRE 4076
mlc/models/tabsurvey/mlp.py sha256=ZsSX86AxA78YLLM9Om3SN37SDskz37A9jB-z8s8kZ3Y 3369
mlc/models/tabsurvey/mlp_rln.py sha256=Nnm-2dsQt6OAzdP9fwMidesyKge8eG4OwvJwycEyctE 8852
mlc/models/tabsurvey/saint.py sha256=U-_3g-WD5lSWtaV8KLhedsnbq8cA5VC0vC0nXPV0hJk 17652
mlc/models/tabsurvey/saint_lib/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/models/tabsurvey/saint_lib/augmentations.py sha256=iZQOV8B-noLW_fQrieJSR1qWFiMXfP5txUE-YtZyjOk 2974
mlc/models/tabsurvey/saint_lib/data_openml.py sha256=keC0V3_DzA-Gp4JzAB0Mk_6g7JvCRRtnUpbV9K7cdDQ 2216
mlc/models/tabsurvey/saint_lib/models/__init__.py sha256=LeMQV9J3R8R9EoziK4N7ZuS2oToqMFN8mbGmOQd1Lhs 154
mlc/models/tabsurvey/saint_lib/models/model.py sha256=M4KdWLBcl0SGq8cqayHDiy-jIHyJn-aW1AF1g3Gb2dw 10485
mlc/models/tabsurvey/saint_lib/models/pretrainmodel.py sha256=9ZCSBDkjn-FfFkXlnr6eSHgJuG-Z7IeatqWjb7nr6iA 6018
mlc/models/tabsurvey/saint_lib/models/pretrainmodel_vision.py sha256=4ruBDcOW3xEvJNj6rVIpE6_o57sGKLELu65PeDzWn0g 4919
mlc/models/tabsurvey/tabtransformer.py sha256=PWIkIriz0RCQitq5Qcp4KcHeNzFs5mu68luvU5H9mrg 23375
mlc/models/tabsurvey/vime.py sha256=_XbQ5FQyWYj7kuQXtwyOxms7xDWFLQ692hzI28uvkeM 19101
mlc/models/tf_models.py sha256=uIDsXbiKWZvKCP9Ojd4sESY8_p53APbYGmO31xmLOhg 1116
mlc/models/torch_models.py sha256=699VDFstXcTXE1yXsxMZdyEuAXK-eIXZ_YcLH7jtQmY 15190
mlc/np_pd_transformer.py sha256=bf6djnmRRvvZTxocUsrKGPO4MIB65EXJbcoAVCxYNgk 519
mlc/run/augment_datasets.py sha256=-Wob42sL_X9-VhCLvyCZDHOsh0PHfzezsl_uLZUKUmY 2898
mlc/run/train copy.py sha256=RagWCX3KS_Z3JpGIC1HucD8wRiPDdNeyqWPu7t_9gKU 6195
mlc/run/train.py sha256=xHDe2GQC0capu1DTnILHB_gI4Wa9WTx7Ai7n28gbFro 2966
mlc/run/train_best.py sha256=KSHIONwkPDZtKtDzMXg8aZiIdoBWNREdroAH4MvvwZM 6388
mlc/run/train_best_malware.py sha256=Yhb9RD_2bHMyLyBIueCoY5j6SG1-bzxQaS0qAMxyoqU 7680
mlc/run/train_deepfm.py sha256=xHDe2GQC0capu1DTnILHB_gI4Wa9WTx7Ai7n28gbFro 2966
mlc/run/train_saint.py sha256=i0KKAwMARTHwxKPT8Y97pIfOVonvIYXl6QPMqyO3Gjk 3518
mlc/run/train_search.py sha256=8ZdmUu6M08gYEsLkd5RDD8zfyDSgTEXAPSHsmSvAWPQ 7416
mlc/run/train_tabtransformer.py sha256=2goSj1lRv2dhxzqX1Af09QJMeR0FRUGsvtjzrgiqwcI 3512
mlc/run/train_tabtransformer_augmented.py sha256=aQF-F18Mw7ckJoI_jGNk_83-smTdTlgviPdbOUHFZ-M 3635
mlc/run/train_vime.py sha256=z1cDPaIYoHR4wYiujeCIJSA7iojlhCRe0_w7MQIZOCw 3543
mlc/transformers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlc/transformers/identity_transformer.py sha256=kdCFMmuF8959QAsVSkRb3mkrHWras_nosz4haAIjIZY 695
mlc/transformers/tab_scaler.py sha256=JWBSC4bVPZv-JrTxEc1H3SGPcm8bTgJGiPz0HLSN80U 13720
mlc/transformers/tabular_transformer.py sha256=kyj1pW8B90tY7Td5U12-St5JofFFadeuI7oqzay1_0k 4158
mlc/transformers/tokennizer.py sha256=P0vNosamGk5rNx9nz9jUh786V-LNJFJaoERX63g1gfY 1946
mlc/transformers/transformer.py sha256=oeOfaMbVPmljn7cB31o_c_Ok-1XqQbdEjTqXWD-gsik 969
mlc/typing.py sha256=e9I_t-n8lSEk-iqIwo6YmaXJxBMA9vj9tBZSTjnjSSM 216
mlc/utils.py sha256=ipsppfwd9QApPrIZXXmcZsB44B8y8DpAjicW1SQKyiA 4080
serval_ml_commons-0.1.5.dist-info/LICENSE sha256=-yDzhBF5SumyyKnilS-bxd8_5mOl0P_NifQYVgO9Gms 1081
serval_ml_commons-0.1.5.dist-info/METADATA sha256=Vs2xTSTCsCJn9aTJGQfGA4gVusy1A0YsuA-01jcOqXw 1527
serval_ml_commons-0.1.5.dist-info/WHEEL sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU 88
serval_ml_commons-0.1.5.dist-info/RECORD