scikit-multilearn-ng

View on PyPIReverse Dependencies (0)

0.0.8 scikit_multilearn_ng-0.0.8-py3-none-any.whl

Wheel Details

Project: scikit-multilearn-ng
Version: 0.0.8
Filename: scikit_multilearn_ng-0.0.8-py3-none-any.whl
Download: [link]
Size: 109612
MD5: 3821e01ea57571aafc27c6f8a85359ee
SHA256: 23ffffcba8fd0ef791c35f893e0dbfbc9d7e49412b75583af1e01e181908ebb4
Uploaded: 2024-09-05 06:27:08 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: scikit-multilearn-ng
Version: 0.0.8
Summary: Scikit-multilearn-ng is the follow up to scikit-multilearn, a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem.
Author: Piotr Szymański
Author-Email: niedakh[at]gmail.com
Home-Page: https://github.com/scikit-multilearn-ng/scikit-multilearn-ng/
License: BSD
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Environment :: Web Environment
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Programming Language :: Python
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
Requires-Dist: scipy (>=1.1.0)
Requires-Dist: numpy (>=1.15.1)
Requires-Dist: liac-arff (>=2.2.1)
Requires-Dist: networkx (>=2.1)
Requires-Dist: python-louvain (>=0.11)
Requires-Dist: future (>=0.16.0)
Requires-Dist: scikit-learn (>=0.19.2)
Requires-Dist: requests (>=2.18.4)
Requires-Dist: joblib
Requires-Dist: pytest (>=3.3.1); extra == "dev"
Requires-Dist: PyHamcrest (>=1.9.0); extra == "dev"
Requires-Dist: ipython; extra == "dev"
Requires-Dist: ipython-genutils; extra == "dev"
Requires-Dist: igraph; extra == "gpl"
Requires-Dist: keras (<=2.12.0); extra == "keras"
Requires-Dist: tensorflow; extra == "keras"
Requires-Dist: pytest; extra == "test"
Requires-Dist: pyhamcrest; extra == "test"
Provides-Extra: dev
Provides-Extra: gpl
Provides-Extra: keras
Provides-Extra: test
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 4927 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
skmultilearn/__init__.py sha256=BTOo8ZEzafVDQVFyXqQZhASRVL-_EdMaASQyRPhbrCA 241
skmultilearn/dataset.py sha256=tDpL6mfuCfOYqdgnPT01YqjMItS_sZhdP0HvWnqIuLI 13844
skmultilearn/utils.py sha256=Quv17ZdRQZ97FH9olCdtqEl-8FCRaF22dGbWOjW0o_s 1683
skmultilearn/adapt/__init__.py sha256=mgmaFpj66wzYsndgrWln8fr4xsJzpYqIVSGdcRiq5iM 2618
skmultilearn/adapt/brknn.py sha256=XVjjyKvqaiD7-pB56dnqE8N1C4sbyMKaITh3jQw46OM 7221
skmultilearn/adapt/mlaram.py sha256=SjtfbmDgXdCfDycSwxIH-tQxD74egFmyuw5S0VCvqw8 12473
skmultilearn/adapt/mlknn.py sha256=UgliXfdumGCyFeCypalajUGHo63xhJ3r8Ns5VIvRQPk 10987
skmultilearn/adapt/mltsvm.py sha256=LJnDYyigBnj0LC-b62dSxg3yzB9zXVNPWKURnsItJks 7019
skmultilearn/base/__init__.py sha256=9c1iVWAJYOlIjeF6lmSViAMTpiRTcpU9mrEYDEO6ucQ 578
skmultilearn/base/base.py sha256=TnMi1b3bE7-ji2QvHPpJFBiJt55HIyr0GYZ9U5oe7HA 10081
skmultilearn/base/mock.py sha256=1NiGhYVhi0QIX-vLOgydG7goUSMkB1A_xw30l-Qjly0 427
skmultilearn/base/problem_transformation.py sha256=wAscb_-aP3CuJ7WP0JB14_JqxR01Cx1bYJoeA3lUyvA 4629
skmultilearn/cluster/__init__.py sha256=6ZipXq40H5I1KSZnTcX0gD6N7clKAq3eH8VJ9t9RmRc 3479
skmultilearn/cluster/balancedkmeans.py sha256=HSv31wiyE-Ktmk_eu19kym-Q2iruxdiPxOKCuByk9Xk 3498
skmultilearn/cluster/base.py sha256=B_H4229mCvSaxuksvdauxSkzp7atZnZYIHHbuAIBdr8 7594
skmultilearn/cluster/fixed.py sha256=mD3f92ELyfhEt54ng1ykMzC2Ief7NdJG6i4quV0RDXk 2390
skmultilearn/cluster/graphtool.py sha256=wQXy72Okceqxo0oJxqgrtYZC2AXCjeS3bTvhegi6zms 9393
skmultilearn/cluster/helpers.py sha256=fJcLvcJBrqj5odSa3ENAf795wd5GQ5ieU4rymt0xfXQ 3118
skmultilearn/cluster/igraph.py sha256=MB4nayQvccBwo1sDOPmvh9FnDpLUpC6fZEiNG7XRJDo 8924
skmultilearn/cluster/matrix.py sha256=EleX_kbCaR1Eu51PE4GWegfqwB9BCujjA7ulB-0w6ok 3049
skmultilearn/cluster/networkx.py sha256=nqoeaUNJ55iRfanbV5pmgcFw-LwXENjR1Thpj8mH3Y0 6801
skmultilearn/cluster/random.py sha256=t9hGnkyyDznE-UoHvMD0KsUIUhmCDcHHDCObshYCNEs 4398
skmultilearn/embedding/__init__.py sha256=gdPxFIvuqYk2IyJACm3a_lSk-s0FBCYZGRiiF1ykZVM 1865
skmultilearn/embedding/_mdsw.py sha256=ogqUUUMZW8cockjpunEA2BnmBpc_dRe2SR4wKFWoGCE 16686
skmultilearn/embedding/classifier.py sha256=veZzFNdpyAiZxS5c-OX7jpCXnbG9Y2cYfquOi7mrx9g 6732
skmultilearn/embedding/clems.py sha256=jBuTbjIzT80kPj2jY4JsAefANDEWR3D-2ABm3KgdwQA 4483
skmultilearn/embedding/openne.py sha256=ZWQH_Nk0FdBxLinb7ZF0Zhbo9lxhwOiUQE4AvTBRB9s 8544
skmultilearn/embedding/skembeddings.py sha256=ZUwrnu2rpGebZHp7Pz9Lx6Ofxhk7j6e8GZ8gAKYaaus 2792
skmultilearn/embedding/unit_tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
skmultilearn/embedding/unit_tests/test_classifier.py sha256=2I6R_M1-hzHm7uungtmMk46iDEPddQu8Fv-aigc1m2I 2784
skmultilearn/ensemble/__init__.py sha256=uoe3stjmw0II4g8HHgHmGguKhWBGkM5B6ZQy1WugG1Q 2731
skmultilearn/ensemble/partition.py sha256=o6JJvnmZ8uHj1TyviO4P9yten8Y4nce9OG6N8ulvKII 5355
skmultilearn/ensemble/rakeld.py sha256=cD-OOlSO8m7mPMQ3xlHZOlkbtujU2uIYzF8n-ILL88Q 5343
skmultilearn/ensemble/rakelo.py sha256=cokBNeMfupoYekkNaoFE0K8q5CN5w5OyS0E6J4ZsS4w 5701
skmultilearn/ensemble/voting.py sha256=NJnoKtKJQzAksONHCH32RRNZDGH2gPWALOLOuXlHY_U 4288
skmultilearn/ext/__init__.py sha256=NnWNXkyv_Syph_u42JYxgRfqR4tHmcsrAz3UQWGu6JM 1666
skmultilearn/ext/keras.py sha256=zYNSP2WkkccYfPUAbJvTh_e_bX-nsoIF8-ljPq-NH_M 1022
skmultilearn/ext/meka.py sha256=2NSSuNGvaMHJW7QKu7rUtqqeDLQH0odeLqxoB1Ul4h8 15758
skmultilearn/missing/__init__.py sha256=YufSETV2bija1HxZhS0MgHtz_mtWk7qnXnFrIAhc3Ls 934
skmultilearn/missing/functions.py sha256=c9g0idV-MlHd9Ff9zYX4NM8ndW7R7j8KmPWGG8C-pac 7179
skmultilearn/missing/smile.py sha256=9BRbmo1c0vZyHhnt1sjfXoXwQhJ7g7w6GQyo_6Ktpf4 7443
skmultilearn/model_selection/__init__.py sha256=kTx_W8t3lchrVVtLegk1JhW5R4X-CTnq3K-Jy_JN-UM 1361
skmultilearn/model_selection/iterative_stratification.py sha256=4lT1zLS3Nqv77Dtg3aWjB13bT9cC0DJeCplpeIWR7Eg 17090
skmultilearn/model_selection/measures.py sha256=7CT92bFrx8zyMY8ZpMBankuIBGm2z2mjAE4F0QnxlF8 9336
skmultilearn/problem_transform/__init__.py sha256=X8l8dLGtI5EvmGUiW1u85xg9filtqvuo-W33KjEedso 5342
skmultilearn/problem_transform/br.py sha256=5w9esaY0gE2yzOV7SsjwYitS6PFfb8bJJZERtmyGrVo 8395
skmultilearn/problem_transform/cc.py sha256=fW-xEr690DG2PUAHv5aPyd5sw0qY5rXkxumCL6VShX8 8729
skmultilearn/problem_transform/chf.py sha256=0xHirDoL4NhkTdp57pftHgAVM0u1cjXIrdDVYOPkGF0 11558
skmultilearn/problem_transform/gsc.py sha256=vl9_ehA8X6uLcRghCtcpq2VZLrvCThFkZTtGy67AGjc 10443
skmultilearn/problem_transform/iblr.py sha256=BshUh-4Bj23nBHjqFbsR-6SGFItV8HyHB373CoNkuBc 12204
skmultilearn/problem_transform/lp.py sha256=kL1qwkQjPbQYSG-CT-No_bq2LOzTypPrt_vmPSn9_g0 9288
skmultilearn/problem_transform/pcc.py sha256=JeBht-H5AIcZQpsqyFQZx8yIF8n6gzqRz6sPgtDu0I4 7634
skmultilearn/tree/__init__.py sha256=lJt50D60Hi1Kl8avTuVKtfTsCXGz5dS7EV9LpX1hd10 1945
skmultilearn/tree/pct.py sha256=c5lxFB-gEMoWdGuLEq8FoYC_GpDePFqkxzQu41XnVI0 13452
scikit_multilearn_ng-0.0.8.dist-info/LICENSE sha256=9gNvedBU9C4R8t1SRYtNIoLpAdGXlV5Zi_GiNgAoDPA 1236
scikit_multilearn_ng-0.0.8.dist-info/METADATA sha256=V9bjhD6S5wfeHwaO30ACWoW7q_7Ienv3XnsbKTn85VI 6832
scikit_multilearn_ng-0.0.8.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
scikit_multilearn_ng-0.0.8.dist-info/top_level.txt sha256=_1Djis1_-Bp-PqdlKeGnS0PKH7gToePYn_FkU03XbOQ 13
scikit_multilearn_ng-0.0.8.dist-info/RECORD

top_level.txt

skmultilearn