safe-ds

View on PyPIReverse Dependencies (2)

0.29.0 safe_ds-0.29.0-py3-none-any.whl

Wheel Details

Project: safe-ds
Version: 0.29.0
Filename: safe_ds-0.29.0-py3-none-any.whl
Download: [link]
Size: 193441
MD5: 8988133118db4a89e4f04a3d5d0202b8
SHA256: 5cfc706851a83fd80ff9d91d3b60e6b8fb2fe2c5046030cc5da9650acd2ec8f2
Uploaded: 2024-11-26 18:19:18 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: safe-ds
Version: 0.29.0
Summary: A user-friendly library for Data Science in Python.
Author: Lars Reimann
Author-Email: mail[at]larsreimann.com
Home-Page: https://github.com/Safe-DS/Library
Project-Url: Documentation, https://library.safeds.com
Project-Url: Repository, https://github.com/Safe-DS/Library
License: MIT
Keywords: data-science,machine-learning,usability,learnability
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.11,<3.13
Requires-Dist: apipkg (<4.0.0,>=3.0.2)
Requires-Dist: matplotlib (<4.0.0,>=3.6.3)
Requires-Dist: numpy (<3.0.0)
Requires-Dist: pillow (<12.0,>=9.5)
Requires-Dist: polars[numpy,pyarrow] (<2.0.0,>=1.7.1)
Requires-Dist: scikit-learn (<2.0.0,>=1.2.0)
Requires-Dist: statsmodels (<0.15.0,>=0.14.1)
Requires-Dist: torch (<3.0.0,>=2.4.1)
Requires-Dist: torchvision (<0.20.0,>=0.19.1)
Requires-Dist: transformers (<5.0.0,>=4.40.2)
Requires-Dist: xxhash (<4.0.0,>=3.4.1)
Description-Content-Type: text/markdown
[Description omitted; length: 2614 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.9.1
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
safeds/__init__.py sha256=KfOP66fGe0-mvMWbAKAYVe08B2Lqae3EHrkID2CV-9w 58
safeds/_config/__init__.py sha256=FbAMsJAbxGXWZqUqsmXeZnadwVB5IfQZRndibny4xqs 487
safeds/_config/_polars.py sha256=HO3UliDBtod0UfUKVigBZUIn9CIq0WXrNdzkPUbc4Ms 363
safeds/_config/_torch.py sha256=z5IN4dAmGH7KcawixtZMFLqCFHEzPZWp0N_3OGI3DCU 761
safeds/_utils/__init__.py sha256=XlJgDdwdSWVUQc786UiIOaNfVuIi-KUAPWsU1vZZ0CA 533
safeds/_utils/_hashing.py sha256=kDUTfIbnw4b743EZhMP5BBtyf2Vup33M5FXwOJoXhg8 1942
safeds/_utils/_plotting.py sha256=QTjDjp-rCDrFR_LxseXBPCquatJebArWObxC_Lb-M8Y 680
safeds/_utils/_random.py sha256=QT5Ix-IhcZ76i-YbEgcrEe8KN26wUaEk3GJAAKV7VsA 191
safeds/_validation/__init__.py sha256=EOOEYt2bM1Ne5fXxX4zOJOVRTaWyDPH15_MxqHdz4pE 847
safeds/_validation/_check_bounds.py sha256=NXM-JdASr_brFiSz2bA7S5dCduTVdpTJBM0RC4BXcks 4303
safeds/_validation/_check_columns_are_numeric.py sha256=nEqjITTz3u9-Z0tZj3ZAH0sH_2n-FFlm4NX3n26On5o 2500
safeds/_validation/_check_columns_dont_exist.py sha256=UMX6KqjYRwvHseMOC45FLOxPynmqfHZlQhgpxUi3Yq4 1704
safeds/_validation/_check_columns_exist.py sha256=y65aLFYSgfoUWuqxC2NFxqXgQgs_XaMuFDlH58YF_LE 2045
safeds/_validation/_normalize_and_check_file_path.py sha256=U7aSXG-l51Zx1uGnMWN2yAZhndcAHU2uxg_M1lFYZPA 1806
safeds/data/__init__.py sha256=znnDbCJNgYorZQ9_5stbPcu9I579KPHCQTcCADOi5S8 41
safeds/data/image/__init__.py sha256=pS1ohMpXJefXV100c-9AElpv0eLDafOvRFWIXQKzXCA 28
safeds/data/image/_utils/__init__.py sha256=gnutMR08jCIP9uBhPwvMZkxN5NXGHVEHigEQNZ03Jpg 43
safeds/data/image/_utils/_image_transformation_error_and_warning_checks.py sha256=lxCKxpdM84jPYPVbPMWypU1EgeUrtejLQ5xl_XI5qoo 3540
safeds/data/image/containers/__init__.py sha256=973pjKKMdx6h-RpNdKja77O-S5QU3GyQrhUCnMKDu2w 350
safeds/data/image/containers/_empty_image_list.py sha256=BpLeg3GpHCmuswfYhlkdQFuuyndfQsi7hSI7D9Ijvgo 7902
safeds/data/image/containers/_image.py sha256=YqavBq4y0f3g7UwYZS-8g9h9OY_yKWwEA-1Yx_9CAxY 25924
safeds/data/image/containers/_image_list.py sha256=CfvxRx349s5Asy9BQGVgRyA2HJ9fH_XYtQU2sAJofJQ 34381
safeds/data/image/containers/_multi_size_image_list.py sha256=UjrtXLeArNv-KOMEr5B9ekpdsVAc0roNi3vOytSENU0 29991
safeds/data/image/containers/_single_size_image_list.py sha256=ljQ7guwSzJFhUPQo6vly9Y3pEtHDwKaIrrtOmYJkznk 53852
safeds/data/image/typing/__init__.py sha256=SY5b0VCmjHnSeHZRXjn4IxOy80QvBwvhLc1NVI8m_BQ 289
safeds/data/image/typing/_image_size.py sha256=Ts10YK3AkaPaHhPbyKVxwXbIUP-Xi4H-_iGYTLnwMOk 544
safeds/data/labeled/__init__.py sha256=x9UJTGGY3GzxFwLTERF5NCRDb_SSsGMEnfNG3YPvZhc 30
safeds/data/labeled/containers/__init__.py sha256=i0blLVo1CwfzbpRL-vO0PFbEA-cNo5nuUjY8sVu6e0I 668
safeds/data/labeled/containers/_dataset.py sha256=hiKZqyjTL6tKE9jfiJc5grCpiAPYofGEbR0oD31KBB0 752
safeds/data/labeled/containers/_image_dataset.py sha256=K9Oceb-dFqIjJOfv62VyG9e1YGGwuEH6Wa8xiQpjZGM 19200
safeds/data/labeled/containers/_tabular_dataset.py sha256=qfQ1uafkdA4aEpuelUpAK0I7S2l0KxAB2gbeXFR9b8U 8229
safeds/data/labeled/containers/_time_series_dataset.py sha256=6eekf9OJEYXp5mueHSFrROfN7BqfpA-CuzvnWeQeNT8 13575
safeds/data/tabular/__init__.py sha256=Bc8t9rY2LBEF9KcfIgWqJZrQcB-egGURk3IOl-a8fOw 30
safeds/data/tabular/containers/__init__.py sha256=Oe-CtSJ3YxIZkCA-8Ei-yrv_pKltszIc_SoTu2q1rqc 698
safeds/data/tabular/containers/_cell.py sha256=_lKnzv-kSDJ9KnjN4MyH956eil8xd70CxV0JL2s5A64 20716
safeds/data/tabular/containers/_column.py sha256=wOayUPQE-xfaPVdlWl8gulFIHHUfj15dcO89HjEPrDA 36321
safeds/data/tabular/containers/_lazy_cell.py sha256=KPeMIZG0t8UVHVLe983A1rz0UrPSK5eG-Krp6M47QiQ 7432
safeds/data/tabular/containers/_lazy_string_cell.py sha256=rzNcYviJxGTg1TuKR-Cdd-OJsA2ki6Rl6WCubT9Glpo 3894
safeds/data/tabular/containers/_lazy_temporal_cell.py sha256=meGYNzuQ6NrlJIo8ZYyGJUhdLeQvt-86zUL-jz4VnvQ 4935
safeds/data/tabular/containers/_lazy_vectorized_row.py sha256=rPup-aFdthwcWBLGnXv85eh7g9dUF4tQ-yZqsr9Fz_0 2623
safeds/data/tabular/containers/_row.py sha256=XJKEL-0hwKBtwm1hBKLLfnapzy5U-AG4eb89z2WX0nQ 4004
safeds/data/tabular/containers/_string_cell.py sha256=7tqhVuhdbnHS3Q0r0eenbV_bz9vuhSJcRGzNDwBdZLs 13766
safeds/data/tabular/containers/_table.py sha256=sdwtXDfrzGUpgNQN-xS18QmhZUyBki4dQxvcP4hWEmY 65534
safeds/data/tabular/containers/_temporal_cell.py sha256=DMk1z643eae1o-TE8dC4k9O6IHCfVeu-HKjadM_5FiI 6846
safeds/data/tabular/plotting/__init__.py sha256=__brQLIdRU9zZby7tXyZVFYlNimT2InsZ79JENF8UBo 420
safeds/data/tabular/plotting/_column_plotter.py sha256=FvXMiLCAUOc-JoSwPmkwrCNQyfFtfhSyptOhmiMBWH0 9012
safeds/data/tabular/plotting/_table_plotter.py sha256=eKT6hFmgyVFuGrqqv_tkqv_vbiCh-Vr1G3VAvJ82TIM 26422
safeds/data/tabular/transformation/__init__.py sha256=zz99_NAcO7b5guogFEtna0Qz8x20m3EDEcv_RFQ7ajg 1997
safeds/data/tabular/transformation/_discretizer.py sha256=95qMDk1TER9AeThJHw6h7xadoAHgNQE_T9hzt1R7XsE 5891
safeds/data/tabular/transformation/_functional_table_transformer.py sha256=N7YS45aiXy4-T8f8-TE74tSMB-NGCFNvyhS-bAGFvqM 3404
safeds/data/tabular/transformation/_invertible_table_transformer.py sha256=4RObghQsL1nkGWISjHZT9LVfSXiZYwcGvpEnnBn5qjY 1075
safeds/data/tabular/transformation/_k_nearest_neighbors_imputer.py sha256=FKjmzd0XCvuexiMgmKI7sfQpfezWTPa9J7h0B_FUDTk 5650
safeds/data/tabular/transformation/_label_encoder.py sha256=KvC4_ZAjs15mvDN7bZ8iRJEKds4zn1P3F4XKVg8JYwo 7934
safeds/data/tabular/transformation/_one_hot_encoder.py sha256=DnfvYWkyrrHO8dbB9kKdDR5xsTUWf7HWMwBq0Dg3m9Y 10380
safeds/data/tabular/transformation/_range_scaler.py sha256=-k2n2Ie1HztREopjluhuo7KKla1XMli9mEo_fSRFrII 7802
safeds/data/tabular/transformation/_robust_scaler.py sha256=jpe5LnefkfyDxgx-GuDIGjRSR0QDh6BZ0e52LWyaCi0 7188
safeds/data/tabular/transformation/_sequential_table_transformer.py sha256=DT3hx8nvtMzx8yD08FPPIEFci0KRBYDNp8hogk_9AoE 4914
safeds/data/tabular/transformation/_simple_imputer.py sha256=UhwNdW7_SuKEuDU2h2KB4kfFqn1kYW1pin-1DjhAuNQ 10505
safeds/data/tabular/transformation/_standard_scaler.py sha256=Obae1oAcmDjdkgzJyx89tqoZ6HqVoaAiDAw052bbK58 6827
safeds/data/tabular/transformation/_table_transformer.py sha256=hnfS66JGmF52c7TizoWlGtk4ObWJMB4G8crfk6UlmEk 3742
safeds/data/tabular/typing/__init__.py sha256=GRMcUucNlOCuMDt6Sw9vvdiGbvgnqHOwuW8Atur6azQ 369
safeds/data/tabular/typing/_data_type.py sha256=1ju5UwzcUkljiOJagP2yslnnU9LUHZCmAnSRyLOSVHI 2080
safeds/data/tabular/typing/_polars_data_type.py sha256=MQiIHJcYFis-7_MkdlWo65W9QXSb5wtifzPZ1tdU6mM 1597
safeds/data/tabular/typing/_polars_schema.py sha256=uKjuutxnode3IAuVDmMCxadWUbxn1AjXRJxucH3CPEE 3663
safeds/data/tabular/typing/_schema.py sha256=J_iTHB1DGlTDRuFgV1xz1D3MUdN_7wh9EEtnNjFSYMc 4262
safeds/exceptions/__init__.py sha256=e43g91Uzpj45Jh_QPFEwr5Hsb1gq87cn8LbKla5fctg 2280
safeds/exceptions/_data.py sha256=5RQzZ3ijPCLGzpypzJSqwxVw1fz85WFhpS-6_xgYFxY 4677
safeds/exceptions/_ml.py sha256=2AIIk1CwWgxPAtYFhG--Yyg6hkFVKUOByL9vnehEy5U 4788
safeds/ml/__init__.py sha256=dVWgLFLJ-90j5eJXI-uRG-QfEXxYhGX5X7l224nleLY 36
safeds/ml/classical/__init__.py sha256=mC0pSE0nlRWKyRtm7hH86dHwmxlxqs6dEEA5Ek8Fn2A 371
safeds/ml/classical/_bases/__init__.py sha256=bLOP8_ajz0wNMTIrj2ruv498_R78b6Q0tqe1f0R7Wxw 1175
safeds/ml/classical/_bases/_ada_boost_base.py sha256=_6OhgkPOfBjmMqVEa4WcEAFsVZ4hiFAf7Ggy93f-Pqs 2412
safeds/ml/classical/_bases/_decision_tree_base.py sha256=EVnWs9Wi83Fo8A1c0PnImnQ4FS1XqohOWyrDFs-uALM 2246
safeds/ml/classical/_bases/_gradient_boosting_base.py sha256=UUz_0_auhFVsCqhFlMexppNIfjo7bPtV_j1RaptD_Mw 2017
safeds/ml/classical/_bases/_k_nearest_neighbors_base.py sha256=1kdlmcyL0xdB371tXpjPhP45iZ5mrWx7NQJ-ujuQLOU 1527
safeds/ml/classical/_bases/_random_forest_base.py sha256=MZ83lvh4NnubLH0Y6byNzm3phS2l67DMzfBn9PDWzL0 2780
safeds/ml/classical/_bases/_support_vector_machine_base.py sha256=LixwcboNHCVHq1BtEllfYe0FVOEfLgGTDqyAPcDSsGY 9472
safeds/ml/classical/_supervised_model.py sha256=I6TFywGs2y1tN2702vnnH13c1w1ogyKecb1Oyy7PdiM 15197
safeds/ml/classical/classification/__init__.py sha256=2bmPSxqCfCDEcvKtEf5pWa6AvnWtvoXJkmSNl8wOfyQ 1726
safeds/ml/classical/classification/_ada_boost_classifier.py sha256=rY8sre1bgVxu-i_emLktZiNdF2d7M4e6zPyV3MGlDNc 5006
safeds/ml/classical/classification/_baseline_classifier.py sha256=n9Go8plJKE0Xvt2QeXriQ7TflraFf_qfYKQjme9cY5g 6998
safeds/ml/classical/classification/_classifier.py sha256=pSln12Ekxi9F5q1I4kzDd7RfknjSQ6cACnnnVKpVI28 12038
safeds/ml/classical/classification/_decision_tree_classifier.py sha256=2NHxTBTwYc8Vb2Ki-t3SulrftKRMolUMCMR5OAnraus 4762
safeds/ml/classical/classification/_gradient_boosting_classifier.py sha256=c6yYbIDVsnFXucG9_VFKhGTxJrTWpQ899FrCOcKKC-Y 3620
safeds/ml/classical/classification/_k_nearest_neighbors_classifier.py sha256=xzmJ4skyhtwPV-mr6D54_c-PD6-1LfWfhmlWMfrjgLE 3385
safeds/ml/classical/classification/_logistic_classifier.py sha256=sPI5Y03XjwkkAX4DeDIUhTw0xaqHDG0Pdld6G23PRgU 2356
safeds/ml/classical/classification/_random_forest_classifier.py sha256=o_FrNly9LRSEZBs5yU9XzONaGSkRklc-bYtKxFFeDmg 4408
safeds/ml/classical/classification/_support_vector_classifier.py sha256=Dysg6zH-_9AU2gbgjiXy6K99zfTmk3TPRxoJcbWTMWE 3802
safeds/ml/classical/regression/__init__.py sha256=o9w22Gr0256VGhUX-n6zUe0hYFosG9gzOW_LxB3L4KU 1788
safeds/ml/classical/regression/_ada_boost_regressor.py sha256=jok3_9khORNPduUu5eOLPyQLAAj2SivTJt1tiIvLJ30 4885
safeds/ml/classical/regression/_arima.py sha256=x1nXcXJv8DFz0YTKCrqzS7Mjbm39SYcQ_HakC02Mpo4 6622
safeds/ml/classical/regression/_baseline_regressor.py sha256=VJWZ5CPOYbDSEO4LpvbjoeBzJhfgXWrQ5W-eN0llDdk 7782
safeds/ml/classical/regression/_decision_tree_regressor.py sha256=X7csOfROVGVquFr35VBybzTx8zsgYvcztry68edmMHg 4743
safeds/ml/classical/regression/_gradient_boosting_regressor.py sha256=ucln4fUwiGnfNuivhFLZTgunopFpZd7quwS0po76k2o 3602
safeds/ml/classical/regression/_k_nearest_neighbors_regressor.py sha256=IEyIHvsRzLxsJyydznPpnyR-ktDt-Jb0Bqo-jYfkM4U 3322
safeds/ml/classical/regression/_linear_regressor.py sha256=Dmyu5ZwRi9ZxjBP2I2OXLq2LmR58Rgg9Bz6TjeRQD98 14756
safeds/ml/classical/regression/_random_forest_regressor.py sha256=kJ-1n2TX2DQusBWg8wY5gTQ6wpHN6Dybsx4z9XfxzO4 4389
safeds/ml/classical/regression/_regressor.py sha256=1PpMGKJe1UXf0VRPa-OdGYZqu2S3p3OZ9sY3tiIN-IE 14711
safeds/ml/classical/regression/_support_vector_regressor.py sha256=UmBt0I9iC8YMA21mP_g641iAGpS_jNXj2YlJTn7UCdc 3714
safeds/ml/hyperparameters/__init__.py sha256=Stvqd9MajJ4bGfOyeV9kWAewMW-LChsTGoQb7WMG1WQ 260
safeds/ml/hyperparameters/_choice.py sha256=WnpDKOBqdRQx398oR9pxHvkTyumA4LJ9YxsbWiB0DZg 1828
safeds/ml/metrics/__init__.py sha256=7IrZAqi1obcv1AhaHl_Wn1TaWBvgeBJENsBffo9CTzc 809
safeds/ml/metrics/_classification_metrics.py sha256=-Rxh-YMW9m14k_O9IRaAuYCA0oKo-fOXw8PV2JpbV98 8154
safeds/ml/metrics/_classifier_metric.py sha256=-5_4uErZ5NvnEGgVQ2yMKXagwqZ2DhnVb-x507y2A1Y 213
safeds/ml/metrics/_regression_metrics.py sha256=5LJY8-vAuVkfc9yGl12Y1q-8ijxoRY4bA88fop3zzeI 13992
safeds/ml/metrics/_regressor_metric.py sha256=IeynyBkz0uXx5m0DYV4AJ1QMTnqQBCs3UKB_ivmz4tY 329
safeds/ml/nn/__init__.py sha256=gdMPPBBkk2UcIScGuU7PZ6cHuMxzWgLTKLyync0InQQ 441
safeds/ml/nn/_internal_model.py sha256=4eLfSlEmShkRProZ9I4uwZbVIimapUBCdR_iKjCaPvI 2535
safeds/ml/nn/_model.py sha256=zxFxukgiFc3N2gizHfvFxFim5BDi6xMFw_BYjj_LxOw 67303
safeds/ml/nn/converters/__init__.py sha256=Hlo0XcyhOTNtQA8qxhSbsQG0OCvF6Xeeres0EW9W_gY 1343
safeds/ml/nn/converters/_input_converter.py sha256=n18EjX8cqeqm9x9p2WBHVt9RMC6YyvaEYyjk2p5YTq8 1515
safeds/ml/nn/converters/_input_converter_image.py sha256=0bR63IuzWrQoiDrqMNLPlYovL7wbiSriSL4HKg0wJnM 4253
safeds/ml/nn/converters/_input_converter_image_to_column.py sha256=cGx_UA-gjJDDLNs4FFpLg-wMF2UJCazEFkPPDykqsrE 2248
safeds/ml/nn/converters/_input_converter_image_to_image.py sha256=1qw2AT2Q5bYchWYbbEFaUSHcbhLD9vVIyfpcB8Jd3wk 1095
safeds/ml/nn/converters/_input_converter_image_to_table.py sha256=QKdLkXCCQzF3qVPDNgNR4Qy03LKswA2o5drZsRRc8-s 1816
safeds/ml/nn/converters/_input_converter_table.py sha256=T-wIxHJEAy8LWrd3epmULsy4hRiT-H-W3oWVeORfEBE 2750
safeds/ml/nn/converters/_input_converter_time_series.py sha256=YNX64XHsEyB4X7215Nir4L8L1p58j7s5pC6yp6tUINY 5127
safeds/ml/nn/layers/__init__.py sha256=FPnpHM09_6MDowAepmofIbGo_hLpEnPNuJC6BPgPvqk 1410
safeds/ml/nn/layers/_convolutional2d_layer.py sha256=DhcfSetiiVPrqwQBU2iDVmGv72rqWDNRYC9oxz0iruQ 9348
safeds/ml/nn/layers/_dropout_layer.py sha256=Mp8_sNED1dG9sNiRRrrzDGpLfooYS4XZLn_fVdaMUvU 3328
safeds/ml/nn/layers/_flatten_layer.py sha256=7RaWBX8g7cNuA2iBR2_t2ztCHF4ZrwEBtmury9DuQR0 2935
safeds/ml/nn/layers/_forward_layer.py sha256=TAo_m8yYTMvvdiwCvyLBMjtbd9c7-rmQ9BH8H5Lj6JI 4355
safeds/ml/nn/layers/_gru_layer.py sha256=I6l61W_Qo3z-U6hiVGtgaWY7GE3NLOg-1iGq2hWTqWE 3601
safeds/ml/nn/layers/_internal_layers.py sha256=p2B8BfG0QroF09u2aEPByjKLv6jI5L4L6OCEV19JqLI 5077
safeds/ml/nn/layers/_layer.py sha256=Wzq64YmIh1AGzYdJQXlAGx5qfhTOYCLz0Eq2Qcu_kms 1338
safeds/ml/nn/layers/_lstm_layer.py sha256=_nEhtJcxxE2uuQpLeoWY-w1fniQR7NKGXsl-pyJH9do 3592
safeds/ml/nn/layers/_pooling2d_layer.py sha256=O379yIt1eAJbt_T6wUNctzm1EyrZwWVfjlJpThm_v_I 5218
safeds/ml/nn/typing/__init__.py sha256=fAdop2OJgm6-xdUGRr7GgJ2eAJVpSh-Q__vnF8iKXc0 557
safeds/ml/nn/typing/_model_image_size.py sha256=9l1PAVVhDgUXPyJjEZcjZvSbHo1hBt7E-mX_kEVnmZk 5405
safe_ds-0.29.0.dist-info/LICENSE sha256=xlNDr6oKSS4qQO1To2wSi8IFViv4gAZRjEgPKJtz-yk 1069
safe_ds-0.29.0.dist-info/METADATA sha256=e0uHuQOo6Kla6IK1CQZv8LMx9degNN-0XqwE-2pkEk4 3754
safe_ds-0.29.0.dist-info/WHEEL sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs 88
safe_ds-0.29.0.dist-info/RECORD