radd

View on PyPIReverse Dependencies (0)

0.5.5 RADD-0.5.5-py3-none-any.whl

Wheel Details

Project: radd
Version: 0.5.5
Filename: RADD-0.5.5-py3-none-any.whl
Download: [link]
Size: 2976978
MD5: d28164751dff8438b966a0d59a869d18
SHA256: aeafb88379ccb31af37e2f1e39c006270cea1ae9511bea6d4d55454e7d858b0a
Uploaded: 2019-02-28 21:44:29 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: RADD
Version: 0.5.5
Summary: RADD (Race Against Drift-Diffusion model) is a python package for fitting & simulating cognitive models of reinforcement learning and decision-making
Author: Kyle Dunovan, Timothy Verstynen, Jeremy Huang
Author-Email: dunovank[at]gmail.com
Home-Page: http://github.com/CoAxLab/radd
Classifier: Environment :: Console
Classifier: Operating System :: OS Independent
Classifier: License :: OSI Approved :: BSD License
Classifier: Intended Audience :: Science/Research
Classifier: Development Status :: 3 - Alpha
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.2
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Scientific/Engineering
Requires-Dist: numpy (>=1.8.2)
Requires-Dist: scipy (>=0.16.1)
Requires-Dist: matplotlib (>=1.4.3)
Requires-Dist: seaborn (>=0.5.1)
Requires-Dist: pandas (>=0.15.1)
Requires-Dist: lmfit (>=0.9.1)
Requires-Dist: scikit-learn (>=0.17.1)
Requires-Dist: progressbar2 (>=3.9.3)
Requires-Dist: numba (>=0.30.1)
Requires-Dist: pyDOE
Requires-Dist: future
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.32.3)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
radd/CORE.py sha256=AsDN7LQsC4c2KMG2qjTJt_7j9EnGP15Zd_3Uw6GEE1U 20385
radd/__init__.py sha256=0YNDCXsNi2aQkOrQCRX_0k8P2vGxpLNrW96qXOFAwy4 1921
radd/build.py sha256=oCLD5EEANr38gc-at2_yyeQjrVKbkiihKfUMHG0MVhw 21781
radd/dfhandler.py sha256=rsMvFgQI7J6G4ql2BMGatpcega1_kl8ViIRT1fgO5FM 17519
radd/models.py sha256=5wBB9oTjfEnR8KGVwZh6GdMzEJ6K-fJ0vVT5UPC9G3U 15112
radd/optimize.py sha256=TyYacHBzn1Fqdm0LeQzxiIdHd4kpmyOuQR3usIpzBFA 25686
radd/theta.py sha256=XhnmH-KhY-OSy5vUxO_MMZY4d7dbDOk7eQ22eJo5pdE 10686
radd/vis.py sha256=gfJtqaPCBrJz4CjjgSaD6XD55_12WHPeTAfbLy88QEU 23790
radd/adapt/RL.py sha256=sfrobWxcrkeds5d6Xy6TmkBC4B2Mi77HUkJ1PvvUEBI 5019
radd/adapt/__init__.py sha256=badeU61Xy29sCRqn8pb-nib_6Y0QYUJqZXHk8J2tt1c 153
radd/adapt/analyzer.py sha256=CN_7lUDle4WZeJFPMFdbKtIPb4HKzz9ek8TwEjvDXBY 3921
radd/adapt/models_rl.py sha256=9eX_Lg2B9JCrJY5fuaHtxP5MhgssFxc6hqiWvvQ2Ebo 15041
radd/adapt/multirace.py sha256=Q_-UpApHw1yR4A86pYBhznrVp5TYra5cC_QI4PsdM_g 10823
radd/adapt/visr.py sha256=3PNthnKk0S5ARY7WzhvCUtbtVKcofGBu3Im1hImGl1c 10929
radd/compiled/__init__.py sha256=badeU61Xy29sCRqn8pb-nib_6Y0QYUJqZXHk8J2tt1c 153
radd/compiled/jitfx.py sha256=KM6q9rQhlYCLxv_cjuC1-ZOYCJAT-wYWTvRIYnwyDnw 24367
radd/datasets/__init__.py sha256=badeU61Xy29sCRqn8pb-nib_6Y0QYUJqZXHk8J2tt1c 153
radd/datasets/eLife15/elife2015_example_data.csv sha256=e6yh_XKrZRtWwZpFnZU7tBL0wpfxPzLVrvRH1h2m2Vk 219028
radd/datasets/eLife15/pro_stop_data.csv sha256=uMYZuczXZ9bDL3hpfSloIfjY7pkcRKUmbOobkI_PWD0 1140914
radd/datasets/eLife15/re_stop_data.csv sha256=s9BMGbrEJF2AklHFitEa1KYxAcCpiY5Ky5_agBAnbTo 1063969
radd/datasets/jNeuro18/adaptive_ss_behavior.csv sha256=uQI2_DRwTMdXZjc3u6JcUupLaPIu7CmFqh9sqmW2TPA 4451647
radd/docs/__init__.py sha256=badeU61Xy29sCRqn8pb-nib_6Y0QYUJqZXHk8J2tt1c 153
radd/docs/docs_draft.md sha256=iraKMMIUyVfAInI-vAdM92dAszfV_UFcCVN2v_ZglhE 7922
radd/docs/fit_report_docs.txt sha256=lVr7v29Nqgg_L1fF1fqV6zGbjqb0bfL_jA2d13ql6iM 3573
radd/docs/xdpm_v_fit_report.txt sha256=zzX6misLYBl_Pz-lwVf5FV8x_sboMe0hxalcZy8WEFU 3171
radd/docs/examples/__init__.py sha256=badeU61Xy29sCRqn8pb-nib_6Y0QYUJqZXHk8J2tt1c 153
radd/docs/examples/adaptiveDPM.png sha256=4rGDTz6nwZQ4imHLlvOyqCkzmgFTYvv5i0mozIqoCc4 808673
radd/docs/examples/anim.mp4 sha256=kZfJJWdZt5x9bo6b_27gZ-2Xowq53xrMGSkayzkf0g8 56266
radd/docs/examples/animations.py sha256=Lh7KbfXs8ylUfyo7ABayrKXKkxMdDoRDu9f9Jr854zU 5681
radd/docs/examples/jneuro_task.png sha256=hAT6xxEKO85QaaoXuJHkshunR4nOG33ENGpaFt-8R6Q 1503362
radd/docs/examples/reactive_example_idx.csv sha256=e6yh_XKrZRtWwZpFnZU7tBL0wpfxPzLVrvRH1h2m2Vk 219028
radd/styles/custom.css sha256=0zYINyk5ZgbBlBrJ8ONUdqvvPzgTqwRH5uZn_lXW5lY 79886
radd/tools/__init__.py sha256=badeU61Xy29sCRqn8pb-nib_6Y0QYUJqZXHk8J2tt1c 153
radd/tools/analyze.py sha256=Ucdj4aTWYZ6E_nmhRpgkMHOPgS2fhXenwrSw5D4xYjo 19712
radd/tools/colors.py sha256=PbZIvAfagPZymkLSKOwJKlclvOCXdahI_X0a75VZwg0 4284
radd/tools/messages.py sha256=x_J1oyF-ZKVQrJD_DGxgFAtc_KUthlP9gr_x4CZZfLY 6349
radd/tools/utils.py sha256=fDWNMw6yfD8I3LUYUNw35y5W74ZUV4IR3u1BHUXVCqE 10911
RADD-0.5.5.dist-info/LICENSE.txt sha256=MX39O61YVdolCDb7JbuC_0_uomOSmRH_yuvRj7oZ2Rg 1530
RADD-0.5.5.dist-info/METADATA sha256=UW_roX2HUuse9sIUzXZSo8Dni0j0lT1n8VsNvXGqTI0 1340
RADD-0.5.5.dist-info/WHEEL sha256=_NOXIqFgOaYmlm9RJLPQZ13BJuEIrp5jx5ptRD5uh3Y 92
RADD-0.5.5.dist-info/top_level.txt sha256=AcS4ejaSFE2iQPrkLpbalJaGsB4Y-8cBAnMNfscGy2U 5
RADD-0.5.5.dist-info/RECORD

top_level.txt

radd