qlknn

View on PyPIReverse Dependencies (0)

1.3.1 qlknn-1.3.1-py3-none-any.whl

Wheel Details

Project: qlknn
Version: 1.3.1
Filename: qlknn-1.3.1-py3-none-any.whl
Download: [link]
Size: 221793
MD5: 02ef3142e27b5426b0aeab92bd91d690
SHA256: 1351a28d243443e753f8da5cd0ec4cfbbf683484810a8c93388f165d2fee3263
Uploaded: 2023-07-13 10:16:37 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: qlknn
Version: 1.3.1
Summary: Tools to create QuaLiKiz Quasi-linear gyrokinetic code Neural Networks
Author: Karel-van-de-Plassche
Author-Email: karelvandeplassche[at]gmail.com
Home-Page: https://gitlab.com/Karel-van-de-Plassche/QLKNN-develop
Project-Url: Repository, https://gitlab.com/Karel-van-de-Plassche/QLKNN-develop
License: MIT
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Utilities
Requires-Python: >=3.8,<3.12
Requires-Dist: gitpython
Requires-Dist: ipython
Requires-Dist: luigi; extra == "pipeline"
Requires-Dist: matplotlib
Requires-Dist: netCDF4
Requires-Dist: numexpr
Requires-Dist: numpy
Requires-Dist: pandas (>=0.15.2)
Requires-Dist: peewee (>=3.0.16); extra == "nndb"
Requires-Dist: poetry-dynamic-versioning[plugin] (<0.25.0,>=0.24.0)
Requires-Dist: psycopg2; extra == "nndb"
Requires-Dist: scikit-learn; extra == "dataset"
Requires-Dist: scipy
Requires-Dist: tables
Requires-Dist: tensorflow (>=2.2); extra == "training"
Requires-Dist: xarray
Provides-Extra: dataset
Provides-Extra: nndb
Provides-Extra: pipeline
Provides-Extra: training
Description-Content-Type: text/markdown
[Description omitted; length: 250 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.6.1
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
qlknn/NNDB/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/NNDB/extract_nns.py sha256=Awwrrl9HIkqEKX1Af1IiavtLK1KzgMdqxibN05EHm0I 2246
qlknn/NNDB/get_best.py sha256=LRyKVYpeobClTN1_9GwiBIi8LNrEMxnMS5O5pu7YcFE 2002
qlknn/NNDB/model.py sha256=njb9_9WtRHxKZp1Ka0157gxaZtng8RKSYd9FlrMTvUQ 66861
qlknn/NNDB/postprocess.py sha256=cb8pgeLqWacJGg_htKrXftfVEU6vdg_faf-Z-S7yEk0 3900
qlknn/NNDB/stats.py sha256=d4USiE7IG-P-DqsiVePcU-msQUc-UXDVKwavuk7DH1I 7364
qlknn/__init__.py sha256=TEB6PPYtLVJ7u0syZe3L5VDHLQbbCLdKOq5TCAU0w-A 615
qlknn/cli.py sha256=-0kRV51ZZnnA_YLdS5vmuQL6Lq1VIl4dW-2o9IQSMR8 1727
qlknn/dataset/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/dataset/calculate_instance_weights.py sha256=bLvmpJoHgJ3fBoIgZeOcCVCdzgSiATKKSmL3X84_uiw 5605
qlknn/dataset/clustering.py sha256=XnZn6rbzJZexh2wEt2sGJu_U3bBAEDzALb65awWRpUI 18545
qlknn/dataset/data_io.py sha256=-eI_P5esSSV9mSsPQJja8tWqUXfU1wF2qpSXaG809bw 18243
qlknn/dataset/filter_archive/edgerun_eight.py sha256=kz-bpJaEcopY4hcYLR2x_k5g3XCQaWNFk3k-GKTdnnA 13880
qlknn/dataset/filter_archive/edgerun_eight_glueing.py sha256=280OKNwhheuaV1KzwTXjTsXVIW-ExyRttxv9NUrpk1E 2259
qlknn/dataset/filter_archive/edgerun_eight_output_statistics.py sha256=_H1c5X7QeZGqoAsIjhtMS1Pl4vAAKXeNRqu8baOzGhU 2259
qlknn/dataset/filter_archive/edgerun_seven.py sha256=TdeOa5w3B6u24GITdElaXXjP64GHZxf8DkHXleohT7k 5641
qlknn/dataset/filter_archive/edgerun_six.py sha256=vu1SzD4zC55inp55qK91aaeVT5HPlYYGm39TiN4cEFc 6420
qlknn/dataset/filter_archive/edgerun_ten.py sha256=ijCJYkxwDLESVnPYdHIFw6266lmXS5XMQxlg2egVFGU 15605
qlknn/dataset/filter_archive/megarun_one_filter.py sha256=FCqgbYxwFpzn5ZQNJrZ4c5AEXAKXt-5mE7hInxGJThM 6881
qlknn/dataset/filter_archive/megarun_one_to_pandas.py sha256=7XHpmlG-FbYsyh6fDI-5DtIW0Ci07ryl_poAKo-4yCg 10579
qlknn/dataset/filter_datasets.py sha256=SJNxrz1D9TInvGOTfAERv-1od0PMYhI17iPJsrCRBwc 2469
qlknn/dataset/filtering.py sha256=n8-RoBIfY8G2qBysrAdkbYVpooPonMq97VfeurCf3Po 34272
qlknn/dataset/hypercube_to_pandas.py sha256=iqOGHEGdLHtnoa31PaXbxDs2npN5qssJ9seDH50LIes 22264
qlknn/dataset/mapping.py sha256=3lhQLbCPUkLnZfs8o3JzQU8E6tJZ7VL3YlHOX7HfctM 1834
qlknn/dataset/prep_datasets.py sha256=QmlkX2hiLeCqFGMFfWL3fZnluEs1F2Z3Vej9HbYmWyQ 6531
qlknn/dataset/separate7D.py sha256=JRoScriK7HFSJ0ffZCpsRX2KF1lxMD8yftS7bJSyqkA 1425
qlknn/gui/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/gui/slice_gui.py sha256=5FpR5drCxqhtu5BcPJsAtPYNwNu_3kTXZwqVEEkLpDk 4555
qlknn/misc/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/misc/activation_showcase.py sha256=zF0K0TRV4LRW_nRhvdE-Uypws3-KicC-TOo_rbHjEDI 1058
qlknn/misc/analyse_names.py sha256=Rtg0m81PWIJvUIGTOK2fb8MOdq_tTUH2xmEm93II9kM 11583
qlknn/misc/binning.py sha256=ur2J7tDZwbyrefOIDKxrZQh32XTIU7oaM-0n2Yw__Fo 4099
qlknn/misc/dataset_measure_mem.sh sha256=HkO9c_f1fJC4QeFC0thg7uBVldBo3vkjGtPGXGzoCXo 3063
qlknn/misc/dataset_memtest.py sha256=366FH0rVyke4B3aNHr7u0jHalVer_bUaIbVtwlmZ30E 1327
qlknn/misc/dataset_snippits.py sha256=87TVdjRR7FeC8d1j03rLNgEhb8V1HNR3LTfup1pon8s 2838
qlknn/misc/dataset_storage_format_profiler.py sha256=e_7Sn1uOjln_NZ8tXOhHu-GIdEpgPv9W63ghjSIqR4o 6750
qlknn/misc/get_dataset_standardization.py sha256=SlyZpf-ht25fCivQ-bLa_nS_vBSiRnZfT9o_SA4SsU0 525
qlknn/misc/random_access_benchmark.py sha256=l63SiXmQbNor_XRjcPTrk0mopjRNkU2wW1V73OJIGLs 3952
qlknn/misc/to_precision.py sha256=kLt4amEVAPn8D4ivFYRYSGOtV3z6OST-fXBNDfJMMWQ 9810
qlknn/misc/tools.py sha256=7K0MBpqHphfgp72FIxq0XdkMFN5XHQ4g5J9Nc4agqdc 4807
qlknn/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/models/clipping.py sha256=CT0Lqfrocn4DS30Q_e4AK2jMNY-euuKOmBlrQP82wbs 5415
qlknn/models/committee.py sha256=0DTLS5qLmcHYu8TxbZTL9iqxYP8mAmul0By_mt5Gtjo 18721
qlknn/models/cython_mkl_ndnn.py sha256=FnuSk2_V9eiG1anFQxq-xfBEk2RUHrehI5Vezzbafug 2593
qlknn/models/ffnn.py sha256=Ycg0vJ6jhl82ndTpmCMWjUI0sZPkDlOtHsiRzxJ_CKs 26421
qlknn/models/kerasmodel.py sha256=vwhTvJhPv_coOTAUunyWc26z9sR60O0RHs0opTwKN1g 46428
qlknn/models/qlknn_fortran.py sha256=uYlXRmqbfOy_tBgCGOYLQClV8mxp6sVYtfFJIm7bqv0 10536
qlknn/models/qlknn_hyper_10D.py sha256=LEbgjOo3aKsmsAD2mHKTuE2BxbtmynUOzyGFJsLov1w 5856
qlknn/models/qlknnmodule.c sha256=Esjavr52eV2Q9WNzq_wCXJ3zK7wPAEkvynyekayYsyU 15260
qlknn/models/rotdiv.py sha256=KL5m45Eto7iF5Z7k_nNTeNuVXVhOm1FeQQu-kOMNghM 5872
qlknn/models/setup.py sha256=ktCoy7vvs8qoxQCzJpN-x6EgmbsvUGm02fxjO-_WSJA 1703
qlknn/models/victor_rule.py sha256=DMv2b5s7imlMFmjgjbCiWDu0ylD0xh7LWFoKF2MvZNg 15878
qlknn/pipeline/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/pipeline/luigi.cfg sha256=otY_dn28LB4KvlT6TqsdOK09TBtavmldRkc-sgyNKnk 345
qlknn/pipeline/one_off_tasks.py sha256=sMhhIIa-dsLUmBpp2VXBn24Ao55Ruc8Ab36zkq15ydo 2872
qlknn/pipeline/pipeline.py sha256=nqmVmEidyp1T6_zVSrsw9fYpS0u6Oh1XjDvZMrFvbuo 21544
qlknn/pipeline/simple_scanner.py sha256=LHZF8rhhbGoJ9l29DFJwO6BUAsMTD_ZImeQPzA9in_0 1150
qlknn/pipeline/train_NDNN_cori_haswell.sh sha256=uDl_V-iTSq8Ps8FlAU5TgzyS_ILWIKYnp7Pfn9PtG4o 340
qlknn/pipeline/train_NDNN_lisa.sh sha256=KmXFNuvZs380gNkwumYrWA4_xXzYBv1iZuHdbWbINQI 353
qlknn/pipeline/train_NDNN_marconi.sh sha256=qJoBqqgvtw7dIhpaaBY53VuPuiMGiuhJQyArPZw6s7o 1020
qlknn/pipeline/train_launch.py sha256=VPVGte1W0dcOkRK9QH270-cZhLpcW0-Tju_wRv9vcs0 2432
qlknn/plots/.gitignore sha256=d6QO9BJI5QVzwfQrbHkhO2sLUWeBkYlufA1fpBvWkJ4 6
qlknn/plots/HornNet_slice.py sha256=L2c5qgDcg05EaG3pEyzIl47WDHDiGL-4-HFBZdw4-FA 6644
qlknn/plots/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/plots/comparison/early_stop.py sha256=KBUGtu4z6J6yhMStcInAe8fblrinmi6L9I3ztVZtXCU 2266
qlknn/plots/comparison/filter.py sha256=7Sn3k6lIF_QNkPYmN7NP4ae7GBqyd8Cae_0RILx7lnI 2237
qlknn/plots/comparison/goodness.py sha256=znRMMeLTYWbVIQVjuWiUX76TDkqjnoDdEugMqjUrfk4 2241
qlknn/plots/comparison/query_to_networks.py sha256=AUWuJC_e3Gbk9ommv5PsXrcjbgI3AdItY4gOq4Cguug 1517
qlknn/plots/comparison/regularization.py sha256=IeMVNpYhkUdVvZOmSuWn6kubygSck_bGR0gmPlhDEsk 2561
qlknn/plots/comparison/similarity.py sha256=bhbZJ626sx6-12NaypoCnrxTiH_dXYsAxag8qLYV8C4 2149
qlknn/plots/comparison/topology.py sha256=KrC4F_dEsjBtsltvAUc1dKASF3BhbXIyKirLI-gNHlQ 2796
qlknn/plots/default_settings_HornNet_slice.json sha256=dfaF8LEUKgXNTuKEPVg5mfBqzTcn6_upXYpnnsU0Sf4 965
qlknn/plots/error_heatmap.py sha256=_g6K_sUkq9OdT2w5czJZA3tGLqcK4-oWLSOVh4seZzI 4340
qlknn/plots/hyperpar_scan.py sha256=topWYZSQGkBbF-tnQAJJ-QruJcnY_um7_p4Lifilw50 5370
qlknn/plots/load_data.py sha256=OQtDnICOzCPiRovxI95JFPJ_B9NMmtKWYZo0T1vGl7E 3568
qlknn/plots/measures_of_goodness.py sha256=UhfXlA7IFLIsi88fI1mL7TtMZil9-akds4mtVLQx9hk 5207
qlknn/plots/plot_camille_NNs.py sha256=VtmDieKNdj6MCTUDUe5AzMFs2QCUwnf9r-XGqL32pts 1621
qlknn/plots/plot_nn_structure.py sha256=qnXduEc_ZjjQlqXi_wOt4BlHpx82050traZioeF7EQY 5663
qlknn/plots/popplots.py sha256=Cvnoa2pbzh003edF0e7_4F3CUtoTOwnXZovdweO24bA 7204
qlknn/plots/qlk_slice_plot_camille.py sha256=ZDMOQAnZa22wBOhQtIRk9tPkmOq6w1wcl13z38wgO2g 704
qlknn/plots/quickslicer.py sha256=rVbW9Z4xvt7qm9uVW20JqZiL5IiXivKodvBLqKISmbc 70259
qlknn/plots/quickslicer_dummy_net.py sha256=hQI2i5Pd3ORlDQwYoC3nJ3F-ffaoaxlgVyhpPJDpMxU 2443
qlknn/plots/statistical_spread.py sha256=y97sF1eop1vc4mSB9Lg6lnrWrQC9MQ4oNcW-KRHgsx8 3317
qlknn/setup_logging.py sha256=TeYHKhxMKU59LVtj7SvZ7hJQpXWR4yrGWkSXTQ_SKsA 2121
qlknn/training/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
qlknn/training/datasets.py sha256=1esNmb5afz6xKE2X54IzJ990TUNAARppfNizo70fdyE 13955
qlknn/training/default_settings.json sha256=fyN54uAzXKEOb0a42NMWFj3id4jW3v54R_azmlKIwEQ 1926
qlknn/training/edgerun8_settings.json sha256=ruB4WOzItSJLKdb_0se0GhkctywVK109RvxfYHkolhU 1873
qlknn/training/gridSearch.py sha256=kySiuAcmM16jBK_fMLS_CVaYGl4IIGgp2YUNw66dWSw 1897
qlknn/training/gridSearch_structure.py sha256=dk2IJASOigEbVgpunRGumYqV88rce2m9_LB9Xjqd-s8 1921
qlknn/training/keras_helpers.py sha256=87Sd_8rp_m1Xn5CFJAosGDCZW6JZG-UNyEswKb4Xnt0 14753
qlknn/training/keras_models.py sha256=hNbhQHFpWrV7ywMkr4WNmwvguFJ7oEkNGor7UAcX4fk 44660
qlknn/training/nn_primitives.py sha256=KVPL4Yc2So4V2emlMefnGAI-w0Z9cv-4prJsQYN4KDo 12532
qlknn/training/profiling.py sha256=NW5uIWdrKRzigMdnGGZuNwFMnggHrONUzmlwD-uVEaQ 836
qlknn/training/train_NDNN.py sha256=MtAZAABgZxHYWEaPIIrdvhGEggnbZtoV71H3b0i4y7E 6309
qlknn/training/train_NDNN_cli.py sha256=LH3NhH7fBPAdp6vLoO1DM1t4_QVvHXZ9uKmGFm4zYy0 5866
qlknn/training/train_NDNN_legacy.py sha256=vM7XnJPansBzBa1KVjRtcGHMbjHXeGZouIR-UNM7XA4 38896
qlknn-1.3.1.dist-info/LICENSE sha256=kMc2CzAvkChCYmcRd_v4s6A3hFhtokB3KwWMQ2o1l1o 1109
qlknn-1.3.1.dist-info/METADATA sha256=S6wWqGkn0TXEiBbvym1G7c8XQysP7I9pQKiPaC5zxj0 1790
qlknn-1.3.1.dist-info/WHEEL sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk 88
qlknn-1.3.1.dist-info/entry_points.txt sha256=0yHPqUg90xJ3BIqMqLsENksfP-3Xky3mqcPzL6TD_oY 122
qlknn-1.3.1.dist-info/RECORD

entry_points.txt

clustering = qlknn.dataset.clustering:main
qlknn = qlknn.cli:main
quickslicer = qlknn.plots.quickslicer:main