pytorch-forecasting

View on PyPIReverse Dependencies (8)

1.2.0 pytorch_forecasting-1.2.0-py3-none-any.whl

Wheel Details

Project: pytorch-forecasting
Version: 1.2.0
Filename: pytorch_forecasting-1.2.0-py3-none-any.whl
Download: [link]
Size: 181946
MD5: 27f066f7e520f8e4c8350dca3dc1b634
SHA256: 7566c7d68c71586c0ea5476a5ae8c40edb953a2be1becb034e54770182ca1ca3
Uploaded: 2024-11-19 17:01:21 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: pytorch-forecasting
Version: 1.2.0
Summary: Forecasting timeseries with PyTorch - dataloaders, normalizers, metrics and models
Author: Jan Beitner
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: License :: OSI Approved :: MIT License
Requires-Python: <3.13,>=3.9
Requires-Dist: numpy (<=3.0.0)
Requires-Dist: torch (!=2.0.1,<3.0.0,>=2.0.0)
Requires-Dist: lightning (<3.0.0,>=2.0.0)
Requires-Dist: scipy (<2.0,>=1.8)
Requires-Dist: pandas (<3.0.0,>=1.3.0)
Requires-Dist: scikit-learn (<2.0,>=1.2)
Requires-Dist: cpflows; extra == "all-extras"
Requires-Dist: matplotlib; extra == "all-extras"
Requires-Dist: optuna (<5.0.0,>=3.1.0); extra == "all-extras"
Requires-Dist: optuna-integration; extra == "all-extras"
Requires-Dist: pytorch-optimizer (<4.0.0,>=2.5.1); extra == "all-extras"
Requires-Dist: statsmodels; extra == "all-extras"
Requires-Dist: pydocstyle (<7.0.0,>=6.1.1); extra == "dev"
Requires-Dist: pre-commit (<5.0.0,>=3.2.0); extra == "dev"
Requires-Dist: invoke; extra == "dev"
Requires-Dist: mypy; extra == "dev"
Requires-Dist: pylint; extra == "dev"
Requires-Dist: ruff; extra == "dev"
Requires-Dist: pytest; extra == "dev"
Requires-Dist: pytest-xdist; extra == "dev"
Requires-Dist: pytest-cov; extra == "dev"
Requires-Dist: pytest-sugar; extra == "dev"
Requires-Dist: coverage; extra == "dev"
Requires-Dist: pyarrow; extra == "dev"
Requires-Dist: ipykernel; extra == "dev"
Requires-Dist: nbconvert; extra == "dev"
Requires-Dist: black[jupyter]; extra == "dev"
Requires-Dist: sphinx; extra == "dev"
Requires-Dist: pydata-sphinx-theme; extra == "dev"
Requires-Dist: nbsphinx; extra == "dev"
Requires-Dist: recommonmark; extra == "dev"
Requires-Dist: ipywidgets (<9.0.0,>=8.0.1); extra == "dev"
Requires-Dist: pytest-dotenv (<1.0.0,>=0.5.2); extra == "dev"
Requires-Dist: tensorboard (<3.0.0,>=2.12.1); extra == "dev"
Requires-Dist: pandoc (<3.0.0,>=2.3); extra == "dev"
Requires-Dist: sphinx (>3.2); extra == "docs"
Requires-Dist: pydata-sphinx-theme; extra == "docs"
Requires-Dist: nbsphinx; extra == "docs"
Requires-Dist: pandoc; extra == "docs"
Requires-Dist: nbconvert; extra == "docs"
Requires-Dist: recommonmark; extra == "docs"
Requires-Dist: docutils; extra == "docs"
Requires-Dist: pytest-github-actions-annotate-failures; extra == "github-actions"
Requires-Dist: networkx; extra == "graph"
Requires-Dist: cpflows; extra == "mqf2"
Requires-Dist: optuna (<5.0.0,>=3.1.0); extra == "tuning"
Requires-Dist: optuna-integration; extra == "tuning"
Requires-Dist: statsmodels; extra == "tuning"
Provides-Extra: all_extras
Provides-Extra: dev
Provides-Extra: docs
Provides-Extra: github-actions
Provides-Extra: graph
Provides-Extra: mqf2
Provides-Extra: tuning
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 9956 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.5.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
docs/source/conf.py sha256=8lNgjv9Ox96ORrvWVTcSzPu5kC703a-771lSRuTlkGk 5371
examples/ar.py sha256=t90akgWpFoneYN1u41RsOE3cjnVa8zudFlukQj25pUc 3800
examples/nbeats.py sha256=UV1xIcDidPMAveSHMndhlXBEkL5QW8AgH5Jirhz2L84 2754
examples/stallion.py sha256=JiWhoKYEGPRKuYdHbO_gQ2AN18Wk2Q5MHnXKzFgeiBE 5766
pytorch_forecasting/__init__.py sha256=cb0-58uX8gs4gcW4voyedETArlnyD26LviQADzP6Ld0 2469
pytorch_forecasting/data/__init__.py sha256=KtnqKYqg8rn1cm89SyHlFU9sSahJZo_hUBOh4FBR7Fc 688
pytorch_forecasting/data/encoders.py sha256=sClYMN5vuDJ6UCmz20axT6MmCfhpzBYsOAXYA4TQx7s 48263
pytorch_forecasting/data/examples.py sha256=78ntFFM9-i6HLyMWSUvs82ZFr11rNIwL2qjfDBNA-mo 3272
pytorch_forecasting/data/samplers.py sha256=4PuZKVvxB-xQUcvUUEJxVFEIwEP8A18tzEZ9pa21fvU 5621
pytorch_forecasting/data/timeseries.py sha256=HsXvuCxpDSgdwIEuvISRKikZL0o13OlGzI_5Qh3x3wc 91529
pytorch_forecasting/metrics/__init__.py sha256=G526rrCEmm5Bwo5RgDmG-NPMW5MOUHJz3OGsKEM6NiA 1324
pytorch_forecasting/metrics/_mqf2_utils.py sha256=ObfrujQ8Fkoo4kBa_K9EQ87phyfL89zQzXjEo17zJ1Y 17642
pytorch_forecasting/metrics/base_metrics.py sha256=vjIz7MPRvBsCCCN-J07tTbMBsuQckoapcP0oiy9BZ0I 37315
pytorch_forecasting/metrics/distributions.py sha256=X97PYYCTInueZdsGFGwNdLwbHvcSTkSUIfaN7a8sn5c 22469
pytorch_forecasting/metrics/point.py sha256=27oc_D7tq9yfwx5jWrpNKt-RRKDWh607BNndZzxGb-U 10444
pytorch_forecasting/metrics/quantile.py sha256=3aRvyIRYKS-MS1B87UzbY0ydPLPemJ2M3B7GesgJh_Y 1880
pytorch_forecasting/models/__init__.py sha256=YMYSUDoOtKIiTJEvRMfoYPgEBX-mspunXRTNkaMZjSU 1043
pytorch_forecasting/models/base_model.py sha256=EqWOIpGZJzKwWEJ7KDSqJ2d1Sg45_CKNQfloKXHepfU 107378
pytorch_forecasting/models/baseline.py sha256=0FVcG8nyBKx40NRwz8Soq6PYot7IFmJEhG81w5W81OM 2378
pytorch_forecasting/models/deepar/__init__.py sha256=WLQ9Q9W6OYj515Uw0eizGEuV2nttAGb71hrg91A7QfY 20900
pytorch_forecasting/models/mlp/__init__.py sha256=P15XcphRIIRxP91dHJ4DXETljTbCvxrkZen6D7o63Ho 8409
pytorch_forecasting/models/mlp/submodules.py sha256=0s3wK-wd9VSUvBSTOb703AE5LJgWsFPloSgcCpJyFnc 1565
pytorch_forecasting/models/nbeats/__init__.py sha256=_VDkTi2wrqL8uo08_iLczJvt-FwAJTeuw_vWKoylmxk 17525
pytorch_forecasting/models/nbeats/sub_modules.py sha256=-JPv_bYnbK3V5TJJ0Xf-HummEgMeH0YG1YqYNpUNzls 6392
pytorch_forecasting/models/nhits/__init__.py sha256=ClbZubmFr_TXx1vVXJbzGTXxUCwQxR8Pmn3Xn2sofvY 27522
pytorch_forecasting/models/nhits/sub_modules.py sha256=0HWNsVlDVEZ2a8aFc7M5pvwCjMSxBESQ0xSgDhbWjqc 14256
pytorch_forecasting/models/nn/__init__.py sha256=3Wo1DsOcwg7a1HCnm_ubY78KjcrdmbgF5QO2AI3EUC4 292
pytorch_forecasting/models/nn/embeddings.py sha256=p6NqV-xF_KYe282wiXZkW3cpr47viixFALjABaOKrGc 9153
pytorch_forecasting/models/nn/rnn.py sha256=uEakB4XhJv3l0Xsei2NxAjED0Ad3UOw2RStTNKIoGh4 7737
pytorch_forecasting/models/rnn/__init__.py sha256=Wc0PQYXTShNFl28g5RjqVtHQ-xmGIwut0Cd9J0n91k0 14596
pytorch_forecasting/models/temporal_fusion_transformer/__init__.py sha256=nPCjQgDaaaX9yeLuRR6yRqqKrUww8hCJbNX0p-mTW8g 40906
pytorch_forecasting/models/temporal_fusion_transformer/sub_modules.py sha256=hYGYQooGjWhp7pdZKEXjOwXKxGAer5dceFjc8lG2z0Q 16205
pytorch_forecasting/models/temporal_fusion_transformer/tuning.py sha256=zMXQJno_TT5uzinhoK7DVR8uAI-M5pSR3rq6UVBZNNw 9801
pytorch_forecasting/utils/__init__.py sha256=iBHUlSG-IcYqjRhiiI7LcF6rQBBYfzDvNIl0Ko1iW-Q 1006
pytorch_forecasting/utils/_dependencies.py sha256=FCJdnQ3X2A8uUJ5zRZh0GK2BY8lGJa8yg8xSRztHT3w 2098
pytorch_forecasting/utils/_utils.py sha256=dSX575xVqcc-lxem9Z1PK7ifs2eKahs4Xm66SdxEBnk 18655
pytorch_forecasting/utils/_maint/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pytorch_forecasting/utils/_maint/_show_versions.py sha256=CRHsQtMj9WgxeICNBjzWlcdNO5KybpeYNvltgVSpXw8 3843
tests/conftest.py sha256=h-cx4G3NnPx71GOwzQk8rULlYzlbWxvQBSIKEmLNMoM 2140
tests/test_metrics.py sha256=M5HPyyupDBCk0fOHO5q5UKTi1lue2CKba0E7OBVdpEI 10015
tests/test_data/test_encoders.py sha256=xXMFKQFcxBDQU9NAnN5SO8Bx6aBKVzn6N1qgATgPhRc 5934
tests/test_data/test_samplers.py sha256=TxyXeJojn-iZDDJ0-P_d9Wwic6dSOWlp5wVHRZGPl7o 1227
tests/test_data/test_timeseries.py sha256=Yb72gv8oqtZTJ6ik5vEeT07AvrqJEoIzFneQLvLn7_o 19312
tests/test_models/conftest.py sha256=5zCwCQtffQExBzO6DZgDJI5-YHk6860tce4rYsV1sO8 8058
tests/test_models/test_baseline.py sha256=vXwGtVXtjay6hVfXOVSL-tXYS1ta3CR4qD2mn8vU5xo 239
tests/test_models/test_deepar.py sha256=x91UnaRiLbrPsH4bio-NP28DTmU9bu5oLHQwEz3F3sU 6471
tests/test_models/test_mlp.py sha256=Ss6irC190s16FZ6y8iWffRHz5D9-kuL96l8JUG1m9eY 3834
tests/test_models/test_nbeats.py sha256=6ecL13lkGKn4ecfa_JhlffnAH8F7SDM9T8isHXsiMn0 2880
tests/test_models/test_nhits.py sha256=V-ROIkBGNN9aIAepOnOxQa8vbIvrT5XoJy3GN8LeUWU 6957
tests/test_models/test_rnn_model.py sha256=YAfpPDK0juvMvMZxkASPlVCBQGLaaaEd4oXeJP9NMBs 3904
tests/test_models/test_temporal_fusion_transformer.py sha256=cBoWtCOmfiH23T555PagW2JCi2EJcsm7P29V556XA0c 14886
tests/test_models/test_nn/test_embeddings.py sha256=u87s9TO58ZS5JDrIxJThdo-8703X1UFT0WuWmrqnpgI 1350
tests/test_models/test_nn/test_rnn.py sha256=Lfr1PWGLguLMyVrZ8EZqEFvJv7DKzf-Si1w1AbNgTfk 1537
tests/test_utils/test_autocorrelation.py sha256=BpIZuvlWu9WaR1oQb0sgx19K6tyKZVwLfN2EQrUk640 436
tests/test_utils/test_show_versions.py sha256=OGaG4e2dahKMOa8NlKTNdNS_ZD72xMzJwom09w6ybnE 1372
pytorch_forecasting-1.2.0.dist-info/LICENSE sha256=510xIfZQM0b7pQ0StfGTdVDVIKcL3q-PNB6G9LYMZ5k 1068
pytorch_forecasting-1.2.0.dist-info/METADATA sha256=hj3EKW7W-u_TvU4HEcqI0KqZhLCkdApOFtgLNe6jG_E 13386
pytorch_forecasting-1.2.0.dist-info/WHEEL sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY 91
pytorch_forecasting-1.2.0.dist-info/top_level.txt sha256=OAdll61o6yXyv7co12YdVXRfo94BmIey9xi30b7UhsE 51
pytorch_forecasting-1.2.0.dist-info/RECORD

top_level.txt

docs
examples
pytorch_forecasting
tests
wheelhouse