pysiml

View on PyPIReverse Dependencies (0)

0.2.9 pysiml-0.2.9-py3-none-any.whl

Wheel Details

Project: pysiml
Version: 0.2.9
Filename: pysiml-0.2.9-py3-none-any.whl
Download: [link]
Size: 182082
MD5: f6058891f3f9ad176335e8d98b35accc
SHA256: d07df5ad4a8ced80a6ba3d774d2be161798750c72ad8366221ceb68c64dd09dc
Uploaded: 2023-09-14 05:09:17 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: pysiml
Version: 0.2.9
Summary: SiML - a Simulation ML library
Author: RICOS Co. Ltd.
Home-Page: https://github.com/ricosjp/pysiml
Project-Url: Documentation, https://ricosjp.github.io/pysiml/
Project-Url: Repository, https://github.com/ricosjp/pysiml
License: Apache-2.0
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Requires-Python: >=3.9,<3.10
Requires-Dist: PyQt5 (<6.0.0,>=5.14.0); extra == "pyqt5"
Requires-Dist: PyYAML (>=5)
Requires-Dist: einops (<0.3,>=0.2)
Requires-Dist: femio (>=0.3.1)
Requires-Dist: joblib (>=0.14.1)
Requires-Dist: metis (<0.3,>=0.2a5)
Requires-Dist: optuna (<2.0,>=1.3)
Requires-Dist: pandas (<2.0,>=1.0)
Requires-Dist: pycryptodomex (<4.0.0,>=3.9.0)
Requires-Dist: pydantic (<2.0.0,>=1.10.7)
Requires-Dist: pydot (<2.0.0,>=1.4.1)
Requires-Dist: pytorch-ignite (<0.4,>=0.3)
Requires-Dist: scikit-learn (>=0.24.0)
Requires-Dist: sqlalchemy (==1.3.13)
Requires-Dist: toml (<0.11.0,>=0.10.2)
Requires-Dist: torch (<2.0.0,>=1.9.0)
Provides-Extra: cupy
Provides-Extra: pyqt5
Description-Content-Type: text/markdown
[Description omitted; length: 460 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.5.2
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
pyproject.toml sha256=7DCrTAdoKYD5HfAYh9yvx1aGs2cJFfFXszgfJCUwrcc 1530
siml/__init__.py sha256=mC61oSLHO5F6zXHhOrzH51R-vkH0mL4MShhSBiRRe6s 638
siml/__main__/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
siml/__main__/convert_interim_data.py sha256=jA6GD7BlnsEjARcln3UBwXlFj64BeFALAmgD1ohBkqo 900
siml/__main__/convert_raw_data.py sha256=VNVOyx9lChopF2Q-9OXtN_-MtfBsyjS_JvFwCjdkv0c 1400
siml/__main__/optimize.py sha256=6HALn60Mxh4GUiPbSXjvrdpkoQ4NgYSzCHCBRbli4W0 1742
siml/__main__/plot_losses.py sha256=0uMsoPN-xR0JhPg0WzSQL5GbD80ovuFO12eVpc0x6Xc 8663
siml/__main__/prepare_preprocess_converters.py sha256=w_rzic--RUyISagQOJw_5-oEkOFEKXUN7G1TkTOxd8g 927
siml/__main__/preprocess_interim_data.py sha256=M5_di_6ORZ3yJL_oUb0kkkelh5ybJelke-vvLz3Xg5w 717
siml/__main__/train.py sha256=7cLknw6yx4Ehm_K9UkUGIbg3QPAXJpr_HpNWP60MvPs 1376
siml/__main__/visualize_graph.py sha256=xyPqVZHA0p3xnB41w4PsKCfy7feicBRMXZveQdo_lpM 3961
siml/base/siml_const.py sha256=XHUALl1xhy7YVorWj_weZ0FTfsoitJdFcfKGm-9C1L8 139
siml/base/siml_enums.py sha256=aR3INV-U399qmFQBrjnYvB2JRyQmkaqA9cETbsx4A2I 579
siml/base/siml_typing.py sha256=A0pQGeRPNQmS3Dd6qNq3umZkbHRrn1YwDb0Owlurweo 228
siml/config.py sha256=_Cc2w65g05Y5QDuh8b8UIY_XFZbwKmXx_Z40ATxVw_I 57
siml/data_parallel.py sha256=b4DU0QCVVbFWB02QdvtMLuLuTIz57npYSlbmKfJVjVo 3520
siml/datasets.py sha256=v1eVzPCWgCtsR-l5xqzL1ozlGOInYXgef6FoGXk218w 26513
siml/inferer.py sha256=OA1AuJXE0laKqhUWaZuKP_ok4un0dK3PJ6RxZk5nXHo 29033
siml/loss_operations/__init__.py sha256=N1Hz-fJTL3e1MCeJt2QP99TDvbO9s6AlP_XzpdiBOpA 84
siml/loss_operations/loss_assignment.py sha256=kpsCetrnNNYPA-WRrmMfrtmApjm96sQXDljJJIRPVd4 1417
siml/loss_operations/loss_calculator.py sha256=oV-kO0IOc7Qs3EyFlwL3mzjSzan7Xp67uspcZ1Alx0c 5468
siml/loss_operations/loss_calculator_builder.py sha256=AGehSx2gfhDjBZhip4xemvbF058NZO1hFyEeaBs_9U8 2199
siml/loss_operations/loss_selector.py sha256=d-sTYDF6yIyNbwQwuwpEOoUaX45Wk-7f1vs4x_q7tH0 2045
siml/mains.py sha256=2Bah9LWn8YPmmXfianE-_nhl9581nUlgwDtA0xUy30o 1364
siml/networks/__init__.py sha256=tEaj4i7EmnpwX2plMo6ZX0I3Oy-UokI_RiAHLJcD8Eo 2791
siml/networks/abstract_equivariant_gnn.py sha256=plXB7OLBDxyXLpdIt9xGLFCambyxUNX_OeY0tMouI4E 11337
siml/networks/abstract_gcn.py sha256=9KjRZipFwA02kNRkiRPF8t-_oD5asQZZD_08ZHZl0Hs 6505
siml/networks/activation.py sha256=lQYzv6VBDRkYtQsJdSEEx-e-5RMwJgjN-W1uc-fx-PU 1007
siml/networks/activations.py sha256=i_bO5nuIa22GBZqFppheEd1j6himhYMKa4SdSwUQ8Xw 4565
siml/networks/array2diagmat.py sha256=VCPwLvAOp3pa76v2CDs0AUC1wVdX9H-3lhCoIRAQSxo 715
siml/networks/array2symmat.py sha256=dpMo6uZb29UOKYVD0KRIJnVvaoKHnt41HRIsthTD9Go 1576
siml/networks/boundary.py sha256=mjUORvMi6i9x8xtA7EfVWdqx0uf4nrg3kzrnvFrwQ6M 20206
siml/networks/concatenator.py sha256=URpeXrfDoZ7e3JgAom_nLHjmmoe8w9k-7UV1gJNYFX4 1099
siml/networks/deepsets.py sha256=lwpEMehRnbOQCI9EYRiFhJZqe8aonGjxfwKmkhdvcGY 2455
siml/networks/einops.py sha256=RHT3Zx6iW8qhiH6RpNhmKJlCaSrWRm-VulnOwNm4G5Q 901
siml/networks/einsum.py sha256=BqOdX9cqyPU7ALqBTQTHh7arDM0EFsMkYyreNJBrReE 1559
siml/networks/gcn.py sha256=9D3CR-pZneQ9rssnLjUS0712ZFQUzvWi0AHdP7mrJ6U 2531
siml/networks/group.py sha256=odQoRXc7WtSHR-o2BxZKGhTWyZjYx7d-QBno4uABCbI 19177
siml/networks/id_mlp.py sha256=hsm2txXhASG1VCasIYNLHYPJl7hB2W-Y18dGlUhXRZI 1330
siml/networks/identity.py sha256=QosXg6Y885Q8mBTY9BEjepafzBisd9oLGzzRxik-o5Y 624
siml/networks/integration.py sha256=LIkz_PU2H8UydqX7x1V-UUSnv522g4XS7LpdHsG_rfA 1863
siml/networks/iso_gcn.py sha256=jIJ6XTWnQmN1eIltQPwYvXtGZzvoRWxfnfUsGbb9_O8 3204
siml/networks/lstm.py sha256=i_P50Nf0CcrGDMWO9ZBCO6xPx86IvwbJilKD3ZBcZQ0 1557
siml/networks/message_passing.py sha256=gbcIj5rXA8r60TGuTPmimIVGuybG6wiqXQN6DkmO4dE 3068
siml/networks/mlp.py sha256=hB9jZ38uMPZe6Arg5-uhPzWXCsw8Up_8sVtvnFBFNX4 1359
siml/networks/nan_mlp.py sha256=4iTv1zALCeeC-cxMIId_Hjd91_WS5bG2jmMdAJPPFr4 1886
siml/networks/network.py sha256=LgEmwEFAMi43FRnxsTBVKjJCSrcmEJURG5txHqS7qdk 16458
siml/networks/normalized_mlp.py sha256=kodlMgoPGYU5CP1vhy9qa9YpTpmEWKew0T2zB4EeaTw 1385
siml/networks/penn.py sha256=uvIH1gSzisQtf3YQBHX2YOfSxnmY05gw-owbewNEF6g 6214
siml/networks/pinv_mlp.py sha256=miBp9-52kD-sx3-3AHlXMLVqb4D5ObRQcNzK5aZ3AMk 4205
siml/networks/projection.py sha256=TIdhEkogeIujkmHyBrPGqiaX8zNXpdu56vRQmmynaHg 3365
siml/networks/proportional.py sha256=3TXvxijGIbDK70WaDFXr0q0CjSUBiyOzN7cQWFeeOFs 1617
siml/networks/pyg/__init__.py sha256=boVIpcHo66UmYCAzQEVwZlyQ3GNfkWI8RGctzSn9x8Y 106
siml/networks/pyg/abstract_pyg_gcn.py sha256=5YabfjkL_VEZqN0H16LqWxNIJq9zWGByjMVgrK8w3sM 526
siml/networks/pyg/cluster_gcn.py sha256=cG5MQsbX7oFjEPqrW14qDK34TRDkcpG4d-TSL2Pquu8 1584
siml/networks/pyg/gcnii.py sha256=p8ettAA7iwuJbDXKiz6CHObugNtUZBPPs5slKgpuOaA 1925
siml/networks/pyg/gcnii_pytorch_geometric.py sha256=CQUTc2b7HWHVOLp3mXoITk9Njuv5YPPe9vimWAVknb0 6685
siml/networks/pyg/gin.py sha256=NqI4dVIBjuSe3bC_Ug_Z8bj70-U5vmc0k6d9RsVv0G0 1410
siml/networks/reducer.py sha256=xWZ6ZHyHjE7Uy8aeMsnpQGx7AH01DbbOzwOMgky7x6k 4578
siml/networks/reshape.py sha256=elBlzlACt13Aa6WiX7SzB9RrDdz4OGCuntGcMbs4jdM 3506
siml/networks/set_transformer.py sha256=G1W8J0JsUEV5fNGiGB9czSgx3Yg3amgmCEkcZSyFi90 8248
siml/networks/share.py sha256=hzro4Hcrl1EnjvJuzqob9gWqj92Rez-F9-jzwgweicg 1571
siml/networks/siml_module.py sha256=oJ1XpPoAyOypU9WhMCmfI7KcxKOkV7esw4rFudq-u7o 9812
siml/networks/sparse.py sha256=0jI0UXzX2UzqXE3fwWwUuzLbhsxm41rrVelVoIFBKog 423
siml/networks/spmm.py sha256=cWXjrQJOoYqrB2wUwUzrH94mjxQyk3qp3lQgxjRquaE 1469
siml/networks/symmat2array.py sha256=9ODPmBwkraXLX76DJZBH6rQm7ULdTTlfsMsv1RXN-VI 1224
siml/networks/tcn.py sha256=BSjGe679bL3ZJCHTxq_xpcc_-9BkbOEgqGNesesDWok 5559
siml/networks/tensor_operations.py sha256=bzzxvWswGKj5zx9xOPmpQuY-r2KORtodKbvRB-fsJfM 5969
siml/networks/threshold.py sha256=oy-7D58Z68uZBn8SZ5XJHzo7GXbUiiBkW5MZL0qq5EE 1415
siml/networks/time_norm.py sha256=fM0A7WF6CjmAcvvBlbziinSQEjQlAIHRkQEQ0Y8tLr0 782
siml/networks/translator.py sha256=-X4wO4QmdtF6byUcHdNRmCCds-c2F-UUvprgW6msCCE 1882
siml/networks/upper_limit.py sha256=OUi7vXtqf0r83ZebSX98Jlo0N6C_v2KpdcF1pccIfGw 1034
siml/optimize.py sha256=KJAkJSvb4s4XF2y86fAt5MZafYrbW9SGXPPsJFqkqkA 6940
siml/path_like_objects/__init__.py sha256=lZettLn6Srjmh7kc2tLYawMgk8kI_1_rqVCKSst3NX4 159
siml/path_like_objects/siml_directory.py sha256=7MD7PWcRfFkwFxEi_Yh_sLZlZdqNa-mxbs1oGc3o5i4 2735
siml/path_like_objects/siml_file_builder.py sha256=lxlj65e_L3rgz_CdZAb51UpJYSqw3lkO2QFDPv2YVPc 736
siml/path_like_objects/siml_files/__init__.py sha256=u7WA0grs7c66eczynDxqXJwLCzB7QNMpOqhZs0d2930 289
siml/path_like_objects/siml_files/checkpoint_file.py sha256=SmGKbhNn1SbnZwM5b2HN-UIVR_Uz5aW4e2yBimA7A5w 3245
siml/path_like_objects/siml_files/interface.py sha256=wrc3u6DnmZy2Tqc2toJhQx-Nt1Vz2D-ISltjAKC4d9A 2268
siml/path_like_objects/siml_files/numpy_file.py sha256=g3lWeK9qkcESbokyCfe1UflgEy_v6fRooosJlQF7_4o 3776
siml/path_like_objects/siml_files/pickle_file.py sha256=NF_jQWHFaB4478eQf3jrMHRr3mOQvXajc3KIT7zjofg 2733
siml/path_like_objects/siml_files/yaml_file.py sha256=uoXrH5Di1MUOBwr-2z2g6cPVGdnnAqoLyfK76bfygbo 2850
siml/prepost.py sha256=QXS0J07tKqhc7B8ZctWgzVBxfy7gPDFL2dZ40L9_-LQ 12361
siml/preprocessing/__init__.py sha256=Y1Ij4vUo0l8TVKWN3EUI0eB_tDcogmovR7FMNO5ppjs 160
siml/preprocessing/converter.py sha256=PypyZxjiCK8aP8jxqqQQRpchgTA63iBvl7iA15SwIlc 21587
siml/preprocessing/scalers_composition.py sha256=eKEkxgEpXXx1xe_WIHSlkNcKvezTQe6QlePbsmWvcU0 9465
siml/preprocessing/scaling_converter.py sha256=eiI10BjSlztPeTUZwPyHrXSF1N-3AJ9kMl7pWec1jjU 11050
siml/preprocessing/siml_scalers/__init__.py sha256=s1f6V4Z56KY1klO29hFYszuQLNiyTTMx36jsLRtb9PA 176
siml/preprocessing/siml_scalers/scale_functions/__init__.py sha256=U0OYAqKY6HRAVhztbmQgDEc7u7sqULBYYnCaYxRhZjQ 1405
siml/preprocessing/siml_scalers/scale_functions/identity_scaler.py sha256=W3GyGt6BzJrg6jV_SDc59cDkXuNyAxgdSEqm0JpXvlg 592
siml/preprocessing/siml_scalers/scale_functions/interface_scaler.py sha256=Om7j_rA9pI0eeHK15IFQInHd-edIL2jIJEOur-xbI6o 738
siml/preprocessing/siml_scalers/scale_functions/isoam_scaler.py sha256=KlPbXA0Ysotk5uYW6DHGvaedAZlOkU8QzUE4h5F0OQ0 2038
siml/preprocessing/siml_scalers/scale_functions/max_abs_scaler.py sha256=ws97VhwtXV-KoU4lHefXIxmLDAdxoKIPh19wDvezSFI 1403
siml/preprocessing/siml_scalers/scale_functions/min_max_scaler.py sha256=A4gg2J8tCYCmDOivgVkIRmfZnhLk-2mQJXY0KQvZc6U 465
siml/preprocessing/siml_scalers/scale_functions/sparse_standard_scaler.py sha256=wdk1e2Cil-OyIo5SiG1PYKY5K60zHUEIPEYPmND4hQA 1926
siml/preprocessing/siml_scalers/scale_functions/standard_scaler.py sha256=qvyUGXXw4j60xGw0RwXUaHaYlnVZHR9XB_DFkayySBg 570
siml/preprocessing/siml_scalers/scale_functions/user_defined_scaler.py sha256=GFwX9UyJ6z9iTy8XiiJgvlv65W6dBRZ8bDLV2sECdTs 865
siml/preprocessing/siml_scalers/scaler_result_save.py sha256=9ZD7dibMlteAZvpePfsK5sEAhf4VMadAMclKJpypz54 1012
siml/preprocessing/siml_scalers/scaler_wrapper.py sha256=_YoFh6KXCS093l-CjMw8hxvy3pO0GxdMcwCj9uZwJ0o 4367
siml/services/__init__.py sha256=UfdYF0fGhc34bu7gPjTSCQgkD0Hnlaavx4AI5yc9iaA 154
siml/services/environment.py sha256=oi0GhoCxvI6HtIYPYa0D6JAh2RdD9Ao0jeeV2pVUykQ 2342
siml/services/inference/__init__.py sha256=bCltATxDFTamdw_d4jpVP68ZfKUpguExJsDqLUbzVgk 279
siml/services/inference/core_inferer.py sha256=bHSCJhQb01oReORPvY9dot37ksVYhfE_rpet5366rJA 2600
siml/services/inference/data_loader_builder.py sha256=5FhUabZ39P1yEODpM3pPduFLAyriyexB_qUHmPuJ7NU 1818
siml/services/inference/engine_builder.py sha256=jcNdp1MzpkAvjSrrutR5e7Nu-gP0FRHeeesfmeEjZWE 2463
siml/services/inference/inner_setting.py sha256=sw3_Priovxo87tcfgBObvm6MY--1QAahM-KG4qz244M 5750
siml/services/inference/metrics_builder.py sha256=QTNratSM0uIbg1WJvYwHJao__YKg6jPW1GhsvwDVLLY 4878
siml/services/inference/postprocessing/__init__.py sha256=txubVxvNDftzgw3M05LP2GPmwvvJZCZKJcU02q4iiqs 203
siml/services/inference/postprocessing/post_fem_data.py sha256=8apB2-cUyssum_6BOx9uVUhmNNvBjoXRnSWn4w4aJ-A 5603
siml/services/inference/postprocessing/postprocessor.py sha256=lnHod9-Wa87QLb4ZMq7cOOeRxFjKQYq4NeuPaTHD6Nk 4979
siml/services/inference/postprocessing/save_processor.py sha256=oJVxJJplyH8dLiYIpG1GJWD_Y58RwrnAwlqNt_dLuA0 7052
siml/services/inference/record_object.py sha256=9cSmtHyNuVwtQbAxkMoUOhCg7TQ6fgyFFwWqyBJ3Gw4 1082
siml/services/model_builder.py sha256=N1TH7yARLchn4ZuXQA9-hoGmqVUkHcPUU0D77Gc0kt0 3161
siml/services/model_selector.py sha256=q2oXdJcujaOa6Y_HFHZ1emxkNaRN00BAGi_kc0zXmvE 4978
siml/services/path_rules.py sha256=fPNdpXcf8GZtI6ZfMrEkKcdo0JkxxPNmnvohbY1evI8 7124
siml/services/training/__init__.py sha256=nuxgfAYieJxucFOKJXwdICJuyvUhHdKjup0okMU8ULk 200
siml/services/training/data_loader_builder.py sha256=2ALPbrVuYGLiF9NBCjVlCUlyrciOCKOTV731Z-gMzhQ 7425
siml/services/training/engine_builder.py sha256=uXKkN8IsMCFF7SVqWIoNC2BxArqw9nxv6jTCy0dWAAg 8504
siml/services/training/events_assigners.py sha256=maiLKohuxltM2GzOJMeZ9kImsX-xR1ADlTS9yR05qR4 7502
siml/services/training/inner_settings.py sha256=LdRlYvE2J2OQAM72-XBXGfF2wsDPJcudzYVbjEQrCRM 3215
siml/services/training/logging_items/__init__.py sha256=OpQjzXWN1zNIPYkT6FtPAfKxzXOpFKBGlq-R98rmlOk 718
siml/services/training/logging_items/logging_items.py sha256=54vrcFrLzkrss9qFmVju5hqazYxxyw8TR34oP4F5QrM 5366
siml/services/training/metrics_builder.py sha256=RnPq5MDTWeUoZhaDNyoYb-TBKjjX6BhdRrXPxrI1r9c 1189
siml/services/training/tensor_spliter.py sha256=pezCbe50ODgef-jjOYTVH-DERN3muv1OZuBq39fzbB4 2729
siml/services/training/trainers_builder.py sha256=_6tszYKDi1GCeSjeFZktNp6DTvs9XMRzjdeCYZiBA94 9402
siml/services/training/training_logger.py sha256=iMvfaTJfk2Sj3aMC22Lc9Lho_tcNlKOqxFeOiIIb-U0 9545
siml/setting.py sha256=IHTmNeQA82_yHDEqWHs35-yBjXZd2ycV_KDiJGbNdM4 52960
siml/siml_variables/__init__.py sha256=Nt8iJ0yLPBJpg1o6K_b5Qr-go5iurvC9FnHxI4lD6eg 163
siml/siml_variables/array_variables/__init__.py sha256=Y2syJXtd98L-Z3kRTCOlCEVZffc-xBbuMIS1uv3ekQU 594
siml/siml_variables/array_variables/interface_wrapper.py sha256=Wi0GcuEexwx6sqTqVcBCtWo2K7kw_LQN6LOdoXnNFYw 1573
siml/siml_variables/array_variables/ndarray_wrapper.py sha256=oNOfbQu_5twQZq9AM_NEWcbswnCzASAEGzCPpUXcujM 1398
siml/siml_variables/array_variables/sparce_array_wrapper.py sha256=yyWwfuKHn686-aQemDMIgcig4K9a6XC-HCTYETJS0O8 1809
siml/siml_variables/tensor_variables/tensor_variables.py sha256=Nh3W1ft6FbGID7cp88lw2VyVVxTkrx_1ovI_I2DFSX0 4156
siml/study.py sha256=Sc8DBdT3ni3mcHICtURUmjDslCkSf7T6lCqADogoRs4 12967
siml/trainer.py sha256=Kk8pRaIdqy0J0Tfg7_WWvvhPmRch9NkzccnS-AMsaes 11496
siml/update_functions/__init__.py sha256=fQY19xMEhZv7k6flZPBmhIgLl3uHuBWkay-YCFfaY64 211
siml/update_functions/element_batch_update.py sha256=axmnn-3YuheDcitX0v_NG6Xnm2NmlWpMD8Ofvur37NE 1806
siml/update_functions/pseudo_batch_update.py sha256=2r9FM04wT3Zi1a7hEe43vJsZ5tGuY0gv-D6Zlx6z4RA 3681
siml/update_functions/standard_update.py sha256=LxkZAmXN7SNR2AqgqkocLoYhAeD78wx_vqT4dLisOpI 2725
siml/update_functions/update_interface.py sha256=Hk0_qdghgAzKBX9qLpBBcUy5L6H2bDSoK3wCPPcTrwk 430
siml/util.py sha256=Pb0eACoq4LiW5E7y3QhOZ0kPztX1toGwHtCFDJhAYKE 19828
siml/utils/__init__.py sha256=DVdxWEBXfapWAWNM0jUouKJzru4RyK2ru2QheBmrm_s 37
siml/utils/fem_data_utils.py sha256=LDB_MxYPg_WELl6D_az9ikMZxAF5Ml5qKUXR2CnuxvE 7682
siml/utils/progress_bar.py sha256=gHcJgdYP4xTo1DlZDxDIggwrxw39WaM_tCwvtLISNJA 1403
siml/utils/timer.py sha256=DEDtrmFpFqiGRykErkLMnwZ3tWUsOsarubnN40kwb6I 1247
pysiml-0.2.9.dist-info/LICENSE sha256=Ok4O8jxCIpLhGZjTNzgBW8V8xITF_SUVEp1juLijZpA 11431
pysiml-0.2.9.dist-info/METADATA sha256=RzC-NI0xZVc22FGJX24Zai8VCUmu-t5tt7Io5hpjmpY 1646
pysiml-0.2.9.dist-info/WHEEL sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU 88
pysiml-0.2.9.dist-info/entry_points.txt sha256=zXU0Gd56XeUfgaeG-CGXcYaTpORSU6kVeQ_vVvjIFPs 388
pysiml-0.2.9.dist-info/RECORD

entry_points.txt

convert_interim_data = siml.__main__.convert_interim_data:main
optimize = siml.__main__.optimize:main
plot_losses = siml.__main__.plot_losses:main
prepare_preprocess_converters = siml.__main__.prepare_preprocess_converters:main
preprocess_interim_data = siml.__main__.preprocess_interim_data:main
train = siml.__main__.train:main
visualize_graph = siml.__main__.visualize_graph:main