pysiml
View on PyPI — Reverse Dependencies (0)
0.2.9 | pysiml-0.2.9-py3-none-any.whl |
Wheel Details
Project: | pysiml |
Version: | 0.2.9 |
Filename: | pysiml-0.2.9-py3-none-any.whl |
Download: | [link] |
Size: | 182082 |
MD5: | f6058891f3f9ad176335e8d98b35accc |
SHA256: | d07df5ad4a8ced80a6ba3d774d2be161798750c72ad8366221ceb68c64dd09dc |
Uploaded: | 2023-09-14 05:09:17 +0000 |
dist-info
METADATA · WHEEL · RECORD · entry_points.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | poetry-core 1.5.2 |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
pyproject.toml | sha256=7DCrTAdoKYD5HfAYh9yvx1aGs2cJFfFXszgfJCUwrcc | 1530 |
siml/__init__.py | sha256=mC61oSLHO5F6zXHhOrzH51R-vkH0mL4MShhSBiRRe6s | 638 |
siml/__main__/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
siml/__main__/convert_interim_data.py | sha256=jA6GD7BlnsEjARcln3UBwXlFj64BeFALAmgD1ohBkqo | 900 |
siml/__main__/convert_raw_data.py | sha256=VNVOyx9lChopF2Q-9OXtN_-MtfBsyjS_JvFwCjdkv0c | 1400 |
siml/__main__/optimize.py | sha256=6HALn60Mxh4GUiPbSXjvrdpkoQ4NgYSzCHCBRbli4W0 | 1742 |
siml/__main__/plot_losses.py | sha256=0uMsoPN-xR0JhPg0WzSQL5GbD80ovuFO12eVpc0x6Xc | 8663 |
siml/__main__/prepare_preprocess_converters.py | sha256=w_rzic--RUyISagQOJw_5-oEkOFEKXUN7G1TkTOxd8g | 927 |
siml/__main__/preprocess_interim_data.py | sha256=M5_di_6ORZ3yJL_oUb0kkkelh5ybJelke-vvLz3Xg5w | 717 |
siml/__main__/train.py | sha256=7cLknw6yx4Ehm_K9UkUGIbg3QPAXJpr_HpNWP60MvPs | 1376 |
siml/__main__/visualize_graph.py | sha256=xyPqVZHA0p3xnB41w4PsKCfy7feicBRMXZveQdo_lpM | 3961 |
siml/base/siml_const.py | sha256=XHUALl1xhy7YVorWj_weZ0FTfsoitJdFcfKGm-9C1L8 | 139 |
siml/base/siml_enums.py | sha256=aR3INV-U399qmFQBrjnYvB2JRyQmkaqA9cETbsx4A2I | 579 |
siml/base/siml_typing.py | sha256=A0pQGeRPNQmS3Dd6qNq3umZkbHRrn1YwDb0Owlurweo | 228 |
siml/config.py | sha256=_Cc2w65g05Y5QDuh8b8UIY_XFZbwKmXx_Z40ATxVw_I | 57 |
siml/data_parallel.py | sha256=b4DU0QCVVbFWB02QdvtMLuLuTIz57npYSlbmKfJVjVo | 3520 |
siml/datasets.py | sha256=v1eVzPCWgCtsR-l5xqzL1ozlGOInYXgef6FoGXk218w | 26513 |
siml/inferer.py | sha256=OA1AuJXE0laKqhUWaZuKP_ok4un0dK3PJ6RxZk5nXHo | 29033 |
siml/loss_operations/__init__.py | sha256=N1Hz-fJTL3e1MCeJt2QP99TDvbO9s6AlP_XzpdiBOpA | 84 |
siml/loss_operations/loss_assignment.py | sha256=kpsCetrnNNYPA-WRrmMfrtmApjm96sQXDljJJIRPVd4 | 1417 |
siml/loss_operations/loss_calculator.py | sha256=oV-kO0IOc7Qs3EyFlwL3mzjSzan7Xp67uspcZ1Alx0c | 5468 |
siml/loss_operations/loss_calculator_builder.py | sha256=AGehSx2gfhDjBZhip4xemvbF058NZO1hFyEeaBs_9U8 | 2199 |
siml/loss_operations/loss_selector.py | sha256=d-sTYDF6yIyNbwQwuwpEOoUaX45Wk-7f1vs4x_q7tH0 | 2045 |
siml/mains.py | sha256=2Bah9LWn8YPmmXfianE-_nhl9581nUlgwDtA0xUy30o | 1364 |
siml/networks/__init__.py | sha256=tEaj4i7EmnpwX2plMo6ZX0I3Oy-UokI_RiAHLJcD8Eo | 2791 |
siml/networks/abstract_equivariant_gnn.py | sha256=plXB7OLBDxyXLpdIt9xGLFCambyxUNX_OeY0tMouI4E | 11337 |
siml/networks/abstract_gcn.py | sha256=9KjRZipFwA02kNRkiRPF8t-_oD5asQZZD_08ZHZl0Hs | 6505 |
siml/networks/activation.py | sha256=lQYzv6VBDRkYtQsJdSEEx-e-5RMwJgjN-W1uc-fx-PU | 1007 |
siml/networks/activations.py | sha256=i_bO5nuIa22GBZqFppheEd1j6himhYMKa4SdSwUQ8Xw | 4565 |
siml/networks/array2diagmat.py | sha256=VCPwLvAOp3pa76v2CDs0AUC1wVdX9H-3lhCoIRAQSxo | 715 |
siml/networks/array2symmat.py | sha256=dpMo6uZb29UOKYVD0KRIJnVvaoKHnt41HRIsthTD9Go | 1576 |
siml/networks/boundary.py | sha256=mjUORvMi6i9x8xtA7EfVWdqx0uf4nrg3kzrnvFrwQ6M | 20206 |
siml/networks/concatenator.py | sha256=URpeXrfDoZ7e3JgAom_nLHjmmoe8w9k-7UV1gJNYFX4 | 1099 |
siml/networks/deepsets.py | sha256=lwpEMehRnbOQCI9EYRiFhJZqe8aonGjxfwKmkhdvcGY | 2455 |
siml/networks/einops.py | sha256=RHT3Zx6iW8qhiH6RpNhmKJlCaSrWRm-VulnOwNm4G5Q | 901 |
siml/networks/einsum.py | sha256=BqOdX9cqyPU7ALqBTQTHh7arDM0EFsMkYyreNJBrReE | 1559 |
siml/networks/gcn.py | sha256=9D3CR-pZneQ9rssnLjUS0712ZFQUzvWi0AHdP7mrJ6U | 2531 |
siml/networks/group.py | sha256=odQoRXc7WtSHR-o2BxZKGhTWyZjYx7d-QBno4uABCbI | 19177 |
siml/networks/id_mlp.py | sha256=hsm2txXhASG1VCasIYNLHYPJl7hB2W-Y18dGlUhXRZI | 1330 |
siml/networks/identity.py | sha256=QosXg6Y885Q8mBTY9BEjepafzBisd9oLGzzRxik-o5Y | 624 |
siml/networks/integration.py | sha256=LIkz_PU2H8UydqX7x1V-UUSnv522g4XS7LpdHsG_rfA | 1863 |
siml/networks/iso_gcn.py | sha256=jIJ6XTWnQmN1eIltQPwYvXtGZzvoRWxfnfUsGbb9_O8 | 3204 |
siml/networks/lstm.py | sha256=i_P50Nf0CcrGDMWO9ZBCO6xPx86IvwbJilKD3ZBcZQ0 | 1557 |
siml/networks/message_passing.py | sha256=gbcIj5rXA8r60TGuTPmimIVGuybG6wiqXQN6DkmO4dE | 3068 |
siml/networks/mlp.py | sha256=hB9jZ38uMPZe6Arg5-uhPzWXCsw8Up_8sVtvnFBFNX4 | 1359 |
siml/networks/nan_mlp.py | sha256=4iTv1zALCeeC-cxMIId_Hjd91_WS5bG2jmMdAJPPFr4 | 1886 |
siml/networks/network.py | sha256=LgEmwEFAMi43FRnxsTBVKjJCSrcmEJURG5txHqS7qdk | 16458 |
siml/networks/normalized_mlp.py | sha256=kodlMgoPGYU5CP1vhy9qa9YpTpmEWKew0T2zB4EeaTw | 1385 |
siml/networks/penn.py | sha256=uvIH1gSzisQtf3YQBHX2YOfSxnmY05gw-owbewNEF6g | 6214 |
siml/networks/pinv_mlp.py | sha256=miBp9-52kD-sx3-3AHlXMLVqb4D5ObRQcNzK5aZ3AMk | 4205 |
siml/networks/projection.py | sha256=TIdhEkogeIujkmHyBrPGqiaX8zNXpdu56vRQmmynaHg | 3365 |
siml/networks/proportional.py | sha256=3TXvxijGIbDK70WaDFXr0q0CjSUBiyOzN7cQWFeeOFs | 1617 |
siml/networks/pyg/__init__.py | sha256=boVIpcHo66UmYCAzQEVwZlyQ3GNfkWI8RGctzSn9x8Y | 106 |
siml/networks/pyg/abstract_pyg_gcn.py | sha256=5YabfjkL_VEZqN0H16LqWxNIJq9zWGByjMVgrK8w3sM | 526 |
siml/networks/pyg/cluster_gcn.py | sha256=cG5MQsbX7oFjEPqrW14qDK34TRDkcpG4d-TSL2Pquu8 | 1584 |
siml/networks/pyg/gcnii.py | sha256=p8ettAA7iwuJbDXKiz6CHObugNtUZBPPs5slKgpuOaA | 1925 |
siml/networks/pyg/gcnii_pytorch_geometric.py | sha256=CQUTc2b7HWHVOLp3mXoITk9Njuv5YPPe9vimWAVknb0 | 6685 |
siml/networks/pyg/gin.py | sha256=NqI4dVIBjuSe3bC_Ug_Z8bj70-U5vmc0k6d9RsVv0G0 | 1410 |
siml/networks/reducer.py | sha256=xWZ6ZHyHjE7Uy8aeMsnpQGx7AH01DbbOzwOMgky7x6k | 4578 |
siml/networks/reshape.py | sha256=elBlzlACt13Aa6WiX7SzB9RrDdz4OGCuntGcMbs4jdM | 3506 |
siml/networks/set_transformer.py | sha256=G1W8J0JsUEV5fNGiGB9czSgx3Yg3amgmCEkcZSyFi90 | 8248 |
siml/networks/share.py | sha256=hzro4Hcrl1EnjvJuzqob9gWqj92Rez-F9-jzwgweicg | 1571 |
siml/networks/siml_module.py | sha256=oJ1XpPoAyOypU9WhMCmfI7KcxKOkV7esw4rFudq-u7o | 9812 |
siml/networks/sparse.py | sha256=0jI0UXzX2UzqXE3fwWwUuzLbhsxm41rrVelVoIFBKog | 423 |
siml/networks/spmm.py | sha256=cWXjrQJOoYqrB2wUwUzrH94mjxQyk3qp3lQgxjRquaE | 1469 |
siml/networks/symmat2array.py | sha256=9ODPmBwkraXLX76DJZBH6rQm7ULdTTlfsMsv1RXN-VI | 1224 |
siml/networks/tcn.py | sha256=BSjGe679bL3ZJCHTxq_xpcc_-9BkbOEgqGNesesDWok | 5559 |
siml/networks/tensor_operations.py | sha256=bzzxvWswGKj5zx9xOPmpQuY-r2KORtodKbvRB-fsJfM | 5969 |
siml/networks/threshold.py | sha256=oy-7D58Z68uZBn8SZ5XJHzo7GXbUiiBkW5MZL0qq5EE | 1415 |
siml/networks/time_norm.py | sha256=fM0A7WF6CjmAcvvBlbziinSQEjQlAIHRkQEQ0Y8tLr0 | 782 |
siml/networks/translator.py | sha256=-X4wO4QmdtF6byUcHdNRmCCds-c2F-UUvprgW6msCCE | 1882 |
siml/networks/upper_limit.py | sha256=OUi7vXtqf0r83ZebSX98Jlo0N6C_v2KpdcF1pccIfGw | 1034 |
siml/optimize.py | sha256=KJAkJSvb4s4XF2y86fAt5MZafYrbW9SGXPPsJFqkqkA | 6940 |
siml/path_like_objects/__init__.py | sha256=lZettLn6Srjmh7kc2tLYawMgk8kI_1_rqVCKSst3NX4 | 159 |
siml/path_like_objects/siml_directory.py | sha256=7MD7PWcRfFkwFxEi_Yh_sLZlZdqNa-mxbs1oGc3o5i4 | 2735 |
siml/path_like_objects/siml_file_builder.py | sha256=lxlj65e_L3rgz_CdZAb51UpJYSqw3lkO2QFDPv2YVPc | 736 |
siml/path_like_objects/siml_files/__init__.py | sha256=u7WA0grs7c66eczynDxqXJwLCzB7QNMpOqhZs0d2930 | 289 |
siml/path_like_objects/siml_files/checkpoint_file.py | sha256=SmGKbhNn1SbnZwM5b2HN-UIVR_Uz5aW4e2yBimA7A5w | 3245 |
siml/path_like_objects/siml_files/interface.py | sha256=wrc3u6DnmZy2Tqc2toJhQx-Nt1Vz2D-ISltjAKC4d9A | 2268 |
siml/path_like_objects/siml_files/numpy_file.py | sha256=g3lWeK9qkcESbokyCfe1UflgEy_v6fRooosJlQF7_4o | 3776 |
siml/path_like_objects/siml_files/pickle_file.py | sha256=NF_jQWHFaB4478eQf3jrMHRr3mOQvXajc3KIT7zjofg | 2733 |
siml/path_like_objects/siml_files/yaml_file.py | sha256=uoXrH5Di1MUOBwr-2z2g6cPVGdnnAqoLyfK76bfygbo | 2850 |
siml/prepost.py | sha256=QXS0J07tKqhc7B8ZctWgzVBxfy7gPDFL2dZ40L9_-LQ | 12361 |
siml/preprocessing/__init__.py | sha256=Y1Ij4vUo0l8TVKWN3EUI0eB_tDcogmovR7FMNO5ppjs | 160 |
siml/preprocessing/converter.py | sha256=PypyZxjiCK8aP8jxqqQQRpchgTA63iBvl7iA15SwIlc | 21587 |
siml/preprocessing/scalers_composition.py | sha256=eKEkxgEpXXx1xe_WIHSlkNcKvezTQe6QlePbsmWvcU0 | 9465 |
siml/preprocessing/scaling_converter.py | sha256=eiI10BjSlztPeTUZwPyHrXSF1N-3AJ9kMl7pWec1jjU | 11050 |
siml/preprocessing/siml_scalers/__init__.py | sha256=s1f6V4Z56KY1klO29hFYszuQLNiyTTMx36jsLRtb9PA | 176 |
siml/preprocessing/siml_scalers/scale_functions/__init__.py | sha256=U0OYAqKY6HRAVhztbmQgDEc7u7sqULBYYnCaYxRhZjQ | 1405 |
siml/preprocessing/siml_scalers/scale_functions/identity_scaler.py | sha256=W3GyGt6BzJrg6jV_SDc59cDkXuNyAxgdSEqm0JpXvlg | 592 |
siml/preprocessing/siml_scalers/scale_functions/interface_scaler.py | sha256=Om7j_rA9pI0eeHK15IFQInHd-edIL2jIJEOur-xbI6o | 738 |
siml/preprocessing/siml_scalers/scale_functions/isoam_scaler.py | sha256=KlPbXA0Ysotk5uYW6DHGvaedAZlOkU8QzUE4h5F0OQ0 | 2038 |
siml/preprocessing/siml_scalers/scale_functions/max_abs_scaler.py | sha256=ws97VhwtXV-KoU4lHefXIxmLDAdxoKIPh19wDvezSFI | 1403 |
siml/preprocessing/siml_scalers/scale_functions/min_max_scaler.py | sha256=A4gg2J8tCYCmDOivgVkIRmfZnhLk-2mQJXY0KQvZc6U | 465 |
siml/preprocessing/siml_scalers/scale_functions/sparse_standard_scaler.py | sha256=wdk1e2Cil-OyIo5SiG1PYKY5K60zHUEIPEYPmND4hQA | 1926 |
siml/preprocessing/siml_scalers/scale_functions/standard_scaler.py | sha256=qvyUGXXw4j60xGw0RwXUaHaYlnVZHR9XB_DFkayySBg | 570 |
siml/preprocessing/siml_scalers/scale_functions/user_defined_scaler.py | sha256=GFwX9UyJ6z9iTy8XiiJgvlv65W6dBRZ8bDLV2sECdTs | 865 |
siml/preprocessing/siml_scalers/scaler_result_save.py | sha256=9ZD7dibMlteAZvpePfsK5sEAhf4VMadAMclKJpypz54 | 1012 |
siml/preprocessing/siml_scalers/scaler_wrapper.py | sha256=_YoFh6KXCS093l-CjMw8hxvy3pO0GxdMcwCj9uZwJ0o | 4367 |
siml/services/__init__.py | sha256=UfdYF0fGhc34bu7gPjTSCQgkD0Hnlaavx4AI5yc9iaA | 154 |
siml/services/environment.py | sha256=oi0GhoCxvI6HtIYPYa0D6JAh2RdD9Ao0jeeV2pVUykQ | 2342 |
siml/services/inference/__init__.py | sha256=bCltATxDFTamdw_d4jpVP68ZfKUpguExJsDqLUbzVgk | 279 |
siml/services/inference/core_inferer.py | sha256=bHSCJhQb01oReORPvY9dot37ksVYhfE_rpet5366rJA | 2600 |
siml/services/inference/data_loader_builder.py | sha256=5FhUabZ39P1yEODpM3pPduFLAyriyexB_qUHmPuJ7NU | 1818 |
siml/services/inference/engine_builder.py | sha256=jcNdp1MzpkAvjSrrutR5e7Nu-gP0FRHeeesfmeEjZWE | 2463 |
siml/services/inference/inner_setting.py | sha256=sw3_Priovxo87tcfgBObvm6MY--1QAahM-KG4qz244M | 5750 |
siml/services/inference/metrics_builder.py | sha256=QTNratSM0uIbg1WJvYwHJao__YKg6jPW1GhsvwDVLLY | 4878 |
siml/services/inference/postprocessing/__init__.py | sha256=txubVxvNDftzgw3M05LP2GPmwvvJZCZKJcU02q4iiqs | 203 |
siml/services/inference/postprocessing/post_fem_data.py | sha256=8apB2-cUyssum_6BOx9uVUhmNNvBjoXRnSWn4w4aJ-A | 5603 |
siml/services/inference/postprocessing/postprocessor.py | sha256=lnHod9-Wa87QLb4ZMq7cOOeRxFjKQYq4NeuPaTHD6Nk | 4979 |
siml/services/inference/postprocessing/save_processor.py | sha256=oJVxJJplyH8dLiYIpG1GJWD_Y58RwrnAwlqNt_dLuA0 | 7052 |
siml/services/inference/record_object.py | sha256=9cSmtHyNuVwtQbAxkMoUOhCg7TQ6fgyFFwWqyBJ3Gw4 | 1082 |
siml/services/model_builder.py | sha256=N1TH7yARLchn4ZuXQA9-hoGmqVUkHcPUU0D77Gc0kt0 | 3161 |
siml/services/model_selector.py | sha256=q2oXdJcujaOa6Y_HFHZ1emxkNaRN00BAGi_kc0zXmvE | 4978 |
siml/services/path_rules.py | sha256=fPNdpXcf8GZtI6ZfMrEkKcdo0JkxxPNmnvohbY1evI8 | 7124 |
siml/services/training/__init__.py | sha256=nuxgfAYieJxucFOKJXwdICJuyvUhHdKjup0okMU8ULk | 200 |
siml/services/training/data_loader_builder.py | sha256=2ALPbrVuYGLiF9NBCjVlCUlyrciOCKOTV731Z-gMzhQ | 7425 |
siml/services/training/engine_builder.py | sha256=uXKkN8IsMCFF7SVqWIoNC2BxArqw9nxv6jTCy0dWAAg | 8504 |
siml/services/training/events_assigners.py | sha256=maiLKohuxltM2GzOJMeZ9kImsX-xR1ADlTS9yR05qR4 | 7502 |
siml/services/training/inner_settings.py | sha256=LdRlYvE2J2OQAM72-XBXGfF2wsDPJcudzYVbjEQrCRM | 3215 |
siml/services/training/logging_items/__init__.py | sha256=OpQjzXWN1zNIPYkT6FtPAfKxzXOpFKBGlq-R98rmlOk | 718 |
siml/services/training/logging_items/logging_items.py | sha256=54vrcFrLzkrss9qFmVju5hqazYxxyw8TR34oP4F5QrM | 5366 |
siml/services/training/metrics_builder.py | sha256=RnPq5MDTWeUoZhaDNyoYb-TBKjjX6BhdRrXPxrI1r9c | 1189 |
siml/services/training/tensor_spliter.py | sha256=pezCbe50ODgef-jjOYTVH-DERN3muv1OZuBq39fzbB4 | 2729 |
siml/services/training/trainers_builder.py | sha256=_6tszYKDi1GCeSjeFZktNp6DTvs9XMRzjdeCYZiBA94 | 9402 |
siml/services/training/training_logger.py | sha256=iMvfaTJfk2Sj3aMC22Lc9Lho_tcNlKOqxFeOiIIb-U0 | 9545 |
siml/setting.py | sha256=IHTmNeQA82_yHDEqWHs35-yBjXZd2ycV_KDiJGbNdM4 | 52960 |
siml/siml_variables/__init__.py | sha256=Nt8iJ0yLPBJpg1o6K_b5Qr-go5iurvC9FnHxI4lD6eg | 163 |
siml/siml_variables/array_variables/__init__.py | sha256=Y2syJXtd98L-Z3kRTCOlCEVZffc-xBbuMIS1uv3ekQU | 594 |
siml/siml_variables/array_variables/interface_wrapper.py | sha256=Wi0GcuEexwx6sqTqVcBCtWo2K7kw_LQN6LOdoXnNFYw | 1573 |
siml/siml_variables/array_variables/ndarray_wrapper.py | sha256=oNOfbQu_5twQZq9AM_NEWcbswnCzASAEGzCPpUXcujM | 1398 |
siml/siml_variables/array_variables/sparce_array_wrapper.py | sha256=yyWwfuKHn686-aQemDMIgcig4K9a6XC-HCTYETJS0O8 | 1809 |
siml/siml_variables/tensor_variables/tensor_variables.py | sha256=Nh3W1ft6FbGID7cp88lw2VyVVxTkrx_1ovI_I2DFSX0 | 4156 |
siml/study.py | sha256=Sc8DBdT3ni3mcHICtURUmjDslCkSf7T6lCqADogoRs4 | 12967 |
siml/trainer.py | sha256=Kk8pRaIdqy0J0Tfg7_WWvvhPmRch9NkzccnS-AMsaes | 11496 |
siml/update_functions/__init__.py | sha256=fQY19xMEhZv7k6flZPBmhIgLl3uHuBWkay-YCFfaY64 | 211 |
siml/update_functions/element_batch_update.py | sha256=axmnn-3YuheDcitX0v_NG6Xnm2NmlWpMD8Ofvur37NE | 1806 |
siml/update_functions/pseudo_batch_update.py | sha256=2r9FM04wT3Zi1a7hEe43vJsZ5tGuY0gv-D6Zlx6z4RA | 3681 |
siml/update_functions/standard_update.py | sha256=LxkZAmXN7SNR2AqgqkocLoYhAeD78wx_vqT4dLisOpI | 2725 |
siml/update_functions/update_interface.py | sha256=Hk0_qdghgAzKBX9qLpBBcUy5L6H2bDSoK3wCPPcTrwk | 430 |
siml/util.py | sha256=Pb0eACoq4LiW5E7y3QhOZ0kPztX1toGwHtCFDJhAYKE | 19828 |
siml/utils/__init__.py | sha256=DVdxWEBXfapWAWNM0jUouKJzru4RyK2ru2QheBmrm_s | 37 |
siml/utils/fem_data_utils.py | sha256=LDB_MxYPg_WELl6D_az9ikMZxAF5Ml5qKUXR2CnuxvE | 7682 |
siml/utils/progress_bar.py | sha256=gHcJgdYP4xTo1DlZDxDIggwrxw39WaM_tCwvtLISNJA | 1403 |
siml/utils/timer.py | sha256=DEDtrmFpFqiGRykErkLMnwZ3tWUsOsarubnN40kwb6I | 1247 |
pysiml-0.2.9.dist-info/LICENSE | sha256=Ok4O8jxCIpLhGZjTNzgBW8V8xITF_SUVEp1juLijZpA | 11431 |
pysiml-0.2.9.dist-info/METADATA | sha256=RzC-NI0xZVc22FGJX24Zai8VCUmu-t5tt7Io5hpjmpY | 1646 |
pysiml-0.2.9.dist-info/WHEEL | sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU | 88 |
pysiml-0.2.9.dist-info/entry_points.txt | sha256=zXU0Gd56XeUfgaeG-CGXcYaTpORSU6kVeQ_vVvjIFPs | 388 |
pysiml-0.2.9.dist-info/RECORD | — | — |
entry_points.txt
convert_interim_data = siml.__main__.convert_interim_data:main
optimize = siml.__main__.optimize:main
plot_losses = siml.__main__.plot_losses:main
prepare_preprocess_converters = siml.__main__.prepare_preprocess_converters:main
preprocess_interim_data = siml.__main__.preprocess_interim_data:main
train = siml.__main__.train:main
visualize_graph = siml.__main__.visualize_graph:main