pylearn-ml
View on PyPI — Reverse Dependencies (0)
1.2.0 | pylearn_ml-1.2.0-py3-none-any.whl |
Wheel Details
Project: | pylearn-ml |
Version: | 1.2.0 |
Filename: | pylearn_ml-1.2.0-py3-none-any.whl |
Download: | [link] |
Size: | 25502 |
MD5: | 34b6d3c12d7cb878b65bbfdaa2cbe233 |
SHA256: | ba747ebf431271bded5da7799b4dc5d35492b3c16caf188fdcd6766fee995e42 |
Uploaded: | 2024-11-06 19:19:54 +0000 |
dist-info
METADATA · WHEEL · RECORD · top_level.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | setuptools (75.1.0) |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
pylearn/__init__.py | sha256=2tjd80RqZFkf5ab5NVgubEtKt2vebeP3u1ddMi2FfQ8 | 1429 |
pylearn/model_utils.py | sha256=kihjLYFFKw4whzqJjGwilaJozrvAw8oq14o2Z_nFp20 | 8227 |
pylearn/classification/__init__.py | sha256=vcnxGaBYChGgNX6-t6zGzUFy_6yL1BQzroKT3kBkN1s | 61 |
pylearn/classification/gaussian_naive_bayes.py | sha256=DuRDOuh7MQ0pybT6ASBjNb9jkTNsUdrWPcay6E-ETzk | 3902 |
pylearn/classification/multinomial_naive_bayes.py | sha256=vIDPTjQlTn0b0cHL_W19euLTMrigYTmKqGbgmKiQSrQ | 6506 |
pylearn/clustering/__init__.py | sha256=Z7kpCOZonNgCvw65HHlp6gvVBiegkJC-Ip_cmAgsNdU | 61 |
pylearn/clustering/clustering.py | sha256=_bY5miRAbH74R4kdMQs_oB6nRCIV6xtwqGiNmc6Rh-c | 3648 |
pylearn/clustering/gaussian_mixture_model.py | sha256=Pngi4uBJx3FKiL_czJ_I-qmvpw7A0M89iUt79HXYMpY | 6760 |
pylearn/clustering/k_means.py | sha256=6ZuVXhXfIk16VlEhJKRjtg2mKoCAWqQnd_Rk-VV7Wl4 | 3322 |
pylearn/clustering/k_medoids.py | sha256=ACWqkl-9oSLia9J1ATX-Nuv84_am465bOdb60HA6H88 | 3295 |
pylearn/neural_network/__init__.py | sha256=qQpQxvqEfSKWL2UrHCn8-X1OXRJwA7Yv8D4bKhcOvWo | 78 |
pylearn/neural_network/activation.py | sha256=RdxnZl8I5axkXocrx4Yk28VFAApy0cv9ynfHpf7jjCM | 1448 |
pylearn/neural_network/activation_functions.py | sha256=hGSMFTIIWy1n8Y3UDVtMm3vIxK2jUpcEQBv1tFH5fbE | 1700 |
pylearn/neural_network/dense_layer.py | sha256=PgQbQ2Q218l1B1CjS65-yO1mHEhpN7kHIFypJ6S1eqc | 1860 |
pylearn/neural_network/layer.py | sha256=xyW2m3G5EU8oy7J_PWxjxVLty8oKu30gdn4VDt261QU | 354 |
pylearn/neural_network/loss_functions.py | sha256=LXju1VuNLyIKV2e3cmnw0vs1dXkGY0lW1hbbnCkBAbA | 1891 |
pylearn/neural_network/network.py | sha256=h8G_EpM3VhZwSpWsnFuWuLwadKo6gm4MKVz3iCx7IjA | 3195 |
tests/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
tests/test_clustering.py | sha256=4g5Qv849qcRc8tFLiD5ZQXkDBqfrRvS0GI1pb0EVak4 | 841 |
tests/test_gaussian_mixture_model.py | sha256=wetarBeNFGtX611AaQvtNIHAY4_Uhmf--4HNIZCrxz4 | 1627 |
tests/test_gaussian_naive_bayes.py | sha256=A-GnHVEZ2mQyuGnQ8ck9jrq6fER0NoERM1KIA9Hqc0E | 3501 |
tests/test_k_means.py | sha256=LmEh7X3va183XxRgPprEDHMtNN8gplprKKkgWByL038 | 436 |
tests/test_k_medoids.py | sha256=Klh12knx-mMdFK6CLOOY-YYjCiCcpadEZvCJotwXuaU | 387 |
tests/test_model_utils.py | sha256=_VkotG4slDmBJh3O9Rd8xn55LU9NxrCh054_ng_DN-0 | 3400 |
tests/test_network.py | sha256=ZHKWPkI3TRoY8C6ff8PTkx-t6yFHiWSG599srjtROys | 655 |
pylearn_ml-1.2.0.dist-info/LICENSE | sha256=ydzL_U01HuI8guUfOK5GlSffrjA-3y1As4X6BWBSaxA | 1088 |
pylearn_ml-1.2.0.dist-info/METADATA | sha256=y-hB1LZK1E6R8KcAM5FwDWBotuyYnnj4G1eO8bZ9i5c | 4242 |
pylearn_ml-1.2.0.dist-info/WHEEL | sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ | 91 |
pylearn_ml-1.2.0.dist-info/top_level.txt | sha256=2k64CtozmFKClf4Q_Bru4y4xgACwl_jO51Hl6syTSD4 | 14 |
pylearn_ml-1.2.0.dist-info/RECORD | — | — |
top_level.txt
pylearn
tests