pykalman-bardo

View on PyPIReverse Dependencies (1)

0.9.7 pykalman_bardo-0.9.7-py2.py3-none-any.whl

Wheel Details

Project: pykalman-bardo
Version: 0.9.7
Filename: pykalman_bardo-0.9.7-py2.py3-none-any.whl
Download: [link]
Size: 244270
MD5: edd888c9ae41e022df7bdbf7abee8f8c
SHA256: e8192e05ad749ce1fb6ead8d9fdcc6a1377a2722f013c775d8d5e5b63db0a103
Uploaded: 2023-09-19 11:18:21 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: pykalman-bardo
Version: 0.9.7
Summary: An implementation of the Kalman Filter, Kalman Smoother, and EM algorithm in Python
Author-Email: Daniel Duckworth <pykalman[at]gmail.com>, Maksym Balatsko <mbalatsko[at]gmail.com>
Project-Url: Homepage, https://github.com/pybardo/pykalman
Project-Url: Repository, https://github.com/pybardo/pykalman
Project-Url: Documentation, https://pykalman.github.io/
License: All code contained except that in pykalman/utils.py is released under the license below. All code in pykalman/utils.py is released under the license contained therein. New BSD License Copyright (c) 2012 Daniel Duckworth. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of Daniel Duckworth nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Keywords: kalman filter,smoothing
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.6
Requires-Dist: numpy
Requires-Dist: scipy
Requires-Dist: pytest; extra == "all"
Requires-Dist: Sphinx; extra == "all"
Requires-Dist: numpydoc; extra == "all"
Requires-Dist: twine; extra == "all"
Requires-Dist: Sphinx; extra == "docs"
Requires-Dist: numpydoc; extra == "docs"
Requires-Dist: pytest; extra == "tests"
Provides-Extra: all
Provides-Extra: docs
Provides-Extra: tests
Description-Content-Type: text/markdown
License-File: COPYING
[Description omitted; length: 2512 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.41.2)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
doc/source/conf.py sha256=L69R3XIeaB8q1WiuPxfoYBS8OC0D5npRAzmS_IJSN5Y 7937
examples/standard/plot_em.py sha256=Tg-Qq1upO971v4QGv4m0CIp0pEuOnSqx8hv1_YCgJf8 4699
examples/standard/plot_filter.py sha256=I_MVg5HHZj6Y5U0pHCZCQhI4LavUfPUymEVI6am9mqU 2121
examples/standard/plot_missing.py sha256=GvL348vdv4StOHW2bgBi5pxyjKbpPUFn0eVfNjeSwuI 2170
examples/standard/plot_online.py sha256=wXwpMtZiSWQLbEkgfNHQiaKx1VQCoGygqrmPwyNswb4 2383
examples/standard/plot_sin.py sha256=fH05po39RBX4LWlaK_jVA8BXk5gXXg7HsnmbtBqWfUA 2103
examples/unscented/plot_additive.py sha256=cwcBN2I92uMbj0DnJD6dzSKEYWUpNAVeROSFcKVMMpY 2605
examples/unscented/plot_filter.py sha256=kuDKSWiVqJndo4yjJkVgw-uzZ0NfH4avzDRArsxK7fA 2451
pykalman/__init__.py sha256=aO0e36Ono-Zq1TerbEk1DhzKU-QRL17M_C3rZDEebJU 379
pykalman/standard.py sha256=7wEpivSoE_ozl9r6aOOjZNOwporXaXHa4Bt4qWWLiIA 60878
pykalman/unscented.py sha256=-3fi83dnTe-3d3EkbvF0w4bGQ4LfP9h7VFmuxtkmboU 51819
pykalman/utils.py sha256=WEXoBVO4gwsoIXIyaRSuaNgbx2vvGuWMOuz4kfT4TVE 5620
pykalman/datasets/__init__.py sha256=kAeHRtomqLaFTL96YPb8xTFfjTEovlHeffdqkMFRDw0 47
pykalman/datasets/base.py sha256=QWkjRSh6u4wRNgu3MVq7Z-KhzcrgwPNJ-5epUdqZs3A 2459
pykalman/datasets/data/robot.mat sha256=IbSS5gQUiywnr9C3FIXTzlW77iPxThZ-DbeTfc95WjQ 187886
pykalman/datasets/descr/robot.rst sha256=hYzpCJpvi2MN53JaAP4lE5enhdyoOpGgJdUidL3zISs 3461
pykalman/sqrt/__init__.py sha256=5t6hsnvJWbjLpuxgoK_CT3lPguMi4IF-Qn0PxTL39wE 277
pykalman/sqrt/bierman.py sha256=xjmG5N3SryoScIijO9908hROpVlSEwQRyrqtgpMBGOI 35116
pykalman/sqrt/cholesky.py sha256=sU6Kj8xph0Zi3nyjuWZJloYFhJO9fzbMdajJyADSH6I 29721
pykalman/sqrt/unscented.py sha256=WF6FdmNceCLFFX3vetCbj6jFmcuIDkvAWmpIz1tSi48 30009
pykalman_bardo-0.9.7.dist-info/COPYING sha256=lVxKcpXu50E1nk0O7mm8g3zWfFRmQPANLkyXrbSmymg 1696
pykalman_bardo-0.9.7.dist-info/METADATA sha256=TvXp_OJI1rR-J_WjXaJdDMvAjlUYqfIuNmiN9zEwt4Y 5774
pykalman_bardo-0.9.7.dist-info/WHEEL sha256=iYlv5fX357PQyRT2o6tw1bN-YcKFFHKqB_LwHO5wP-g 110
pykalman_bardo-0.9.7.dist-info/top_level.txt sha256=FQhcUiGKLkCS1MuPHCvTa3UvJMXkqDxPoIXGdIKKoy0 22
pykalman_bardo-0.9.7.dist-info/zip-safe sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs 1
pykalman_bardo-0.9.7.dist-info/RECORD

top_level.txt

doc
examples
pykalman

zip-safe