pycaret-ts-alpha

View on PyPIReverse Dependencies (0)

3.0.0.dev1649017462 pycaret_ts_alpha-3.0.0.dev1649017462-py3-none-any.whl

Wheel Details

Project: pycaret-ts-alpha
Version: 3.0.0.dev1649017462
Filename: pycaret_ts_alpha-3.0.0.dev1649017462-py3-none-any.whl
Download: [link]
Size: 468057
MD5: 04ff6a012e49020cddd368b169bf0d74
SHA256: e4d427e9a4d392d09eda47564fee1b263991f83785ea7d123ffd25d8ded10e7e
Uploaded: 2022-04-03 20:24:28 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: pycaret-ts-alpha
Version: 3.0.0.dev1649017462
Summary: PyCaret - An open source, low-code machine learning library in Python.
Author: Moez Ali
Author-Email: moez.ali[at]queensu.ca
Home-Page: https://github.com/pycaret/pycaret
License: MIT
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.7
Requires-Dist: ipython (>=5.5.0)
Requires-Dist: numpy (~=1.21)
Requires-Dist: pandas (<1.5.0,>=1.3.0)
Requires-Dist: scipy (~=1.7.3)
Requires-Dist: joblib (~=1.0.1)
Requires-Dist: scikit-learn (>=1.0.2)
Requires-Dist: pyod (>=0.9.8)
Requires-Dist: imbalanced-learn (>=0.8.1)
Requires-Dist: category-encoders (>=2.4.0)
Requires-Dist: lightgbm (>=3.0.0)
Requires-Dist: numba (~=0.55.0)
Requires-Dist: matplotlib (>=3.3.0)
Requires-Dist: scikit-plot (>=0.3.7)
Requires-Dist: yellowbrick (>=1.4)
Requires-Dist: plotly (>=5.0.0)
Requires-Dist: kaleido (>=0.2.1)
Requires-Dist: statsmodels (>=0.12.1)
Requires-Dist: sktime (==0.10.1)
Requires-Dist: tbats (>=1.1.0)
Requires-Dist: pmdarima (>=1.8.0)
Requires-Dist: shap (>=0.38.0); extra == "analysis"
Requires-Dist: interpret (>=0.2.7); extra == "analysis"
Requires-Dist: umap-learn (>=0.5.2); extra == "analysis"
Requires-Dist: ipywidgets (>=7.6.5); extra == "analysis"
Requires-Dist: pandas-profiling (>=3.1.0); extra == "analysis"
Requires-Dist: explainerdashboard (>=0.3.8); extra == "analysis"
Requires-Dist: autoviz (>=0.1.36); extra == "analysis"
Requires-Dist: fairlearn (>=0.7.0); extra == "analysis"
Requires-Dist: shap (>=0.38.0); extra == "full"
Requires-Dist: interpret (>=0.2.7); extra == "full"
Requires-Dist: umap-learn (>=0.5.2); extra == "full"
Requires-Dist: ipywidgets (>=7.6.5); extra == "full"
Requires-Dist: pandas-profiling (>=3.1.0); extra == "full"
Requires-Dist: explainerdashboard (>=0.3.8); extra == "full"
Requires-Dist: autoviz (>=0.1.36); extra == "full"
Requires-Dist: fairlearn (>=0.7.0); extra == "full"
Requires-Dist: xgboost (>=1.1.0); extra == "full"
Requires-Dist: catboost (>=0.23.2); extra == "full"
Requires-Dist: kmodes (>=0.11.1); extra == "full"
Requires-Dist: mlxtend (>=0.19.0); extra == "full"
Requires-Dist: tune-sklearn (>=0.2.1); extra == "full"
Requires-Dist: ray[tune] (>=1.0.0); extra == "full"
Requires-Dist: hyperopt (>=0.2.7); extra == "full"
Requires-Dist: optuna (>=2.2.0); extra == "full"
Requires-Dist: scikit-optimize (>=0.9.0); extra == "full"
Requires-Dist: mlflow (>=1.24.0); extra == "full"
Requires-Dist: gradio (>=2.8.10); extra == "full"
Requires-Dist: fastapi (>=0.75.0); extra == "full"
Requires-Dist: uvicorn (>=0.17.6); extra == "full"
Requires-Dist: m2cgen (>=0.9.0); extra == "full"
Requires-Dist: evidently (>=0.1.45.dev0); extra == "full"
Requires-Dist: nltk (>=3.7); extra == "full"
Requires-Dist: pyLDAvis (>=3.3.1); extra == "full"
Requires-Dist: gensim (>=4.1.2); extra == "full"
Requires-Dist: spacy (>=3.2.3); extra == "full"
Requires-Dist: wordcloud (>=1.8.1); extra == "full"
Requires-Dist: textblob (>=0.17.1); extra == "full"
Requires-Dist: psutil (>=5.9.0); extra == "full"
Requires-Dist: fugue (>=0.6.5); extra == "full"
Requires-Dist: mlflow (>=1.24.0); extra == "mlops"
Requires-Dist: gradio (>=2.8.10); extra == "mlops"
Requires-Dist: fastapi (>=0.75.0); extra == "mlops"
Requires-Dist: uvicorn (>=0.17.6); extra == "mlops"
Requires-Dist: m2cgen (>=0.9.0); extra == "mlops"
Requires-Dist: evidently (>=0.1.45.dev0); extra == "mlops"
Requires-Dist: xgboost (>=1.1.0); extra == "models"
Requires-Dist: catboost (>=0.23.2); extra == "models"
Requires-Dist: kmodes (>=0.11.1); extra == "models"
Requires-Dist: mlxtend (>=0.19.0); extra == "models"
Requires-Dist: nltk (>=3.7); extra == "nlp"
Requires-Dist: pyLDAvis (>=3.3.1); extra == "nlp"
Requires-Dist: gensim (>=4.1.2); extra == "nlp"
Requires-Dist: spacy (>=3.2.3); extra == "nlp"
Requires-Dist: wordcloud (>=1.8.1); extra == "nlp"
Requires-Dist: textblob (>=0.17.1); extra == "nlp"
Requires-Dist: tune-sklearn (>=0.2.1); extra == "tuners"
Requires-Dist: ray[tune] (>=1.0.0); extra == "tuners"
Requires-Dist: hyperopt (>=0.2.7); extra == "tuners"
Requires-Dist: optuna (>=2.2.0); extra == "tuners"
Requires-Dist: scikit-optimize (>=0.9.0); extra == "tuners"
Provides-Extra: analysis
Provides-Extra: full
Provides-Extra: mlops
Provides-Extra: models
Provides-Extra: nlp
Provides-Extra: tuners
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 8631 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
pycaret/__init__.py sha256=dyBd7vftB96HYtJF77kgVyOnFs0LFxQaU5_QmeCUd9o 137
pycaret/datasets.py sha256=J1c4nti2wbE-8EyhRqc8-RZMIaDtmwmhFmbLaGR89oI 4645
pycaret/distributions.py sha256=rwXXdUTMiwJZgr6Cshf4EsVx7OwF4sQeAxVTNLInUus 162
pycaret/anomaly/__init__.py sha256=hoDZEiqBrHgpwPErkooBkte6yOwEKKCBYYZ5Xcgk6o4 784
pycaret/anomaly/functional.py sha256=P8pLJT-0KidrPbQ5p7cMC9AW6XApBbHdQfy2LG8-5M8 45937
pycaret/anomaly/oop.py sha256=k1nlZk67zFG_6qHSvtfu2Dr3heYnsJNHyJK-y9yvatw 1819
pycaret/arules/__init__.py sha256=Jt_Flsu1HCOar67kvE8Zc9VHVzzBwuhNe_17K7YuV18 11309
pycaret/classification/__init__.py sha256=eEKQrUKiyq9NAJRg0Kt8cvklMPqXaPjrWVKAKpX6lJE 1517
pycaret/classification/functional.py sha256=FjpUQbUy8KvKdNdnuJLd-WLyT3tja2jCRpaDVHs5x5M 103376
pycaret/classification/oop.py sha256=N88TqJjioSU09lTOFuefj41oWx4JYGjkE7WcU6ld3g4 93931
pycaret/clustering/__init__.py sha256=DUELHIdP4SU5BKjw7nIJxFz6L_LW9q4FKMTSI0GGyQo 925
pycaret/clustering/functional.py sha256=HDxfVX0bAc3nmy5CDmILSW6M-EWpTFhqaQhxMyLnK4k 50901
pycaret/clustering/oop.py sha256=2H2LuLnAfOAG3kAv5jGDRlH5JOMF3joAuhO8R1KFYZY 6788
pycaret/containers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/containers/base_container.py sha256=0IED_eyggnjU_4OS44cGzzCiadZ71Jrscu4i0cDmiXM 3875
pycaret/containers/metrics/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/containers/metrics/anomaly.py sha256=pdWViPntfMZxViOM-cdUFrMT8f4IucyQlt8oOuIdsmc 6423
pycaret/containers/metrics/base_metric.py sha256=OFC4-KhcVcOqYXe8W3I4mmzdGgAd-t4K9E_uHud26Oc 3755
pycaret/containers/metrics/classification.py sha256=nv7j_LNRvb9DNgZuPNGPvdAvISWDT0jHm-LbnIINzo8 9908
pycaret/containers/metrics/clustering.py sha256=JX301hgqwQmv47dI-tyIrB-chbhg8ST9qQviyICfOkM 8067
pycaret/containers/metrics/regression.py sha256=dUHSnrnSfvs30gJbT5pgWUbWd6pGbXlnDY6_lC7Ukzg 9468
pycaret/containers/metrics/time_series.py sha256=W-LrCDxRSCyZVx_97jAc4qbSubBbe2JFR6PeW1TmAac 11218
pycaret/containers/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/containers/models/anomaly.py sha256=ux3BpAMed0AAisCvQwY_FHPSBYCBv1RV-PmfkWBCOMc 13119
pycaret/containers/models/base_model.py sha256=b3eio4XNZIfJSC_6vKbSblbOKdAQSGbtrSgPUiR9s3I 4058
pycaret/containers/models/classification.py sha256=RCuk9sfRgBYXxHtgnL2Vjoz68fuum96AEpaGhbYNu24 51508
pycaret/containers/models/clustering.py sha256=tkxSlWa5tb6dFdXaAbB3oxYx0tZEsb8U-Xc90XpUzyc 13015
pycaret/containers/models/regression.py sha256=ksF67HvtE7v6hXtB9-hL8dzYLOA0Drpo11oWgg0eNYI 59934
pycaret/containers/models/time_series.py sha256=ibNmsJznlN01hr4QcXG2d9h5Iiw_rdWCrLBS8qoKxD8 100569
pycaret/internal/Display.py sha256=6zJDvHsmRWpkt5MUfMZiVeo5aoUYZheIkaXVqS81WOo 5764
pycaret/internal/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/cuml_wrappers.py sha256=NLDQLc1z_ZoHzJ7qHO8TLshxJ_gLbDqJPusWDnUhqKw 19265
pycaret/internal/distributions.py sha256=VL_4HCnOZaU6XbSEZFav_gNtXrqU25ithehVZ4_hImg 11888
pycaret/internal/ensemble.py sha256=UYeQEsgGiH4C2B7P7khDLcP5dJjCNT7n3eln8t--igs 4729
pycaret/internal/logging.py sha256=PxUhNBze6CIx2PE-87735lJg8B83xU7fWskrkqGEtDg 1919
pycaret/internal/meta_estimators.py sha256=hM3FTjSof8PORjtP4N5Y7HmQxpGd4KQ9I5_iCXVB8Gk 8119
pycaret/internal/metrics.py sha256=-JL3Qa1jBCsX3aVDeAU-5tRnKIOZ_z26HIG53fHzzes 8665
pycaret/internal/persistence.py sha256=PRaqd9C2r-CXHIBva6mdN_iY1Fc5-5Khi50yIbAnEys 26989
pycaret/internal/pipeline.py sha256=ym9lSA31a6rLJ5iVHpE-Doh9r0-srLH6OWNZv_2OCEI 16355
pycaret/internal/tabular.py sha256=d0MRBaRYTdlfb3le5lZymnZ-GP3a_VhWONzu9vW7voY 1207
pycaret/internal/tunable.py sha256=buPMGuFxe2KnJjWVJD1WODiHM-v0L2oV1y7awoWE_8w 45223
pycaret/internal/utils.py sha256=gXodcjd6laMSk-elHsJAQLxXAPaNOrBhPN4ttLMy6aQ 27439
pycaret/internal/validation.py sha256=og3jHx8m-Tl2ts-hkrO3fgTSv-psFPXOtMrH27PxgTc 1959
pycaret/internal/patches/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/patches/boruta_py.py sha256=9p0KaYupLBKHTp1Snf5iELe5q6YdWoC2Ik3FKHXt5Jg 8728
pycaret/internal/patches/sklearn.py sha256=UoMd6A093IB_5bATNtSgJduywmaBAFgVQEp8uALNCqo 3238
pycaret/internal/patches/yellowbrick.py sha256=7IX16VvSVNRa0kcVhfUP1zbJIEAeoLbtp-qGhXLIUZU 381
pycaret/internal/plots/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/plots/helper.py sha256=y164kT1iR0J9Ehb2pc3Drx9fhj4DN98-Wy2K0wlgHAc 4938
pycaret/internal/plots/residual_plots.py sha256=BjJdywHU-F5Ifw9vcjW2sL42TZfSX1hWFjUhfnrDzJ8 28208
pycaret/internal/plots/time_series.py sha256=9Qt_LlGpzKsM6CYPRpyDa4Eh8xee4CNKFPZxhSHvO5k 38078
pycaret/internal/plots/yellowbrick.py sha256=JyCODRjgBT2rwXmLYA62ngzMrKOOWsGqCHtV5HWovPs 3712
pycaret/internal/plots/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/plots/utils/time_series.py sha256=AIB4o-S6kQKDCwv7y0BTdtkRjCHUT55gdgjXhH3vmWk 23394
pycaret/internal/preprocess/__init__.py sha256=SB9qgzNTqFsnY8kUp36Ob9z4_kHS3a3FIl5_JGQ7d8A 286
pycaret/internal/preprocess/iterative_imputer.py sha256=RjvyD4FsVJYCJHk464aCN9RyvF4ED4SVWQb5EbRD_Eo 20268
pycaret/internal/preprocess/preprocessor.py sha256=VfiMA9bU9wM0ABo9lzUr4Sl3nkO1zz00J9_fnna5cMs 29385
pycaret/internal/preprocess/transformers.py sha256=BdmYs4p13SGqSyAhmhdQSShR36nj_AxbqZAmRw0LcYs 12600
pycaret/internal/preprocess/target/TransformedTargetClassifier.py sha256=bhYVDNWgrZ4JSDE_NzO8_xw1QJIafw4KZL1pZm9dVKM 6686
pycaret/internal/preprocess/target/TransformedTargetRegressor.py sha256=4OstkMklDZAuHuBp_mfc0tWtU50nQQ98W8Ly3tXgOHo 1189
pycaret/internal/preprocess/target/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/preprocess/target/utils.py sha256=ixHkcTxyi25ufwm9f-guY95Hwtak9kGPwY6PizlZHBg 2016
pycaret/internal/preprocess/time_series/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/preprocess/time_series/forecasting/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/preprocess/time_series/forecasting/preprocessor.py sha256=8N_iu0owvYg-8M1EBinNwA2mykKAZrpfq-PxHom2djY 9749
pycaret/internal/pycaret_experiment/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/internal/pycaret_experiment/pycaret_experiment.py sha256=LjIUqM741RibCionLO6SMd1Uu240_i3zONIxq7opt4w 18186
pycaret/internal/pycaret_experiment/supervised_experiment.py sha256=XTmrSsU3OJ1ThAHRDHIGFfvrg1EZxzjN0v43ALGCCYw 186785
pycaret/internal/pycaret_experiment/tabular_experiment.py sha256=dIky7lhuzkxMrQFoqbAddomSf5cYkgXrRDxd-BdzTYw 109783
pycaret/internal/pycaret_experiment/unsupervised_experiment.py sha256=33P5gkao8E9eHg2g8zGNiqSk5veWg-Imq1zwKcxn5Oo 47843
pycaret/internal/pycaret_experiment/utils.py sha256=QSZdrBWfC0GTHl1v0gLww4AtX2_JMZm8ZoJVMI9krWw 599
pycaret/internal/tests/__init__.py sha256=N5QbV-Z1-5pxhN-BrynpyCEHN0-nFuNrdfrQCYd62z4 1340
pycaret/internal/tests/stats.py sha256=FhcLlxzhuvOMUsmtxNuOLRmrQNIwzlseKVixXxbHNBg 5830
pycaret/internal/tests/time_series.py sha256=fFDZQYT3C6CpRu-LMgQrHdrxiZp1S20FpFkF2Kj2TRk 20735
pycaret/nlp/__init__.py sha256=xl7b6TQKpT8sWb0Mt4ghXifO0jL4nenCgh-oQYH7mmU 135167
pycaret/parallel/__init__.py sha256=IYG2t6kAkU46Obl-H72O--m7KjofbLRxjsRuId2wplo 136
pycaret/parallel/fugue_backend.py sha256=kyFFevbcIYCKii9MYtiprTzpxQyDkZfEXTB4CAF1r14 6616
pycaret/parallel/parallel_backend.py sha256=2l4DDaYRTRTKbpUk4E8mXPI9B8xQDcOYpGHqKxygpx4 1892
pycaret/regression/__init__.py sha256=ogaTRI9TMt7YduN_foSsIqP2wO8fV5a0EGMou7r0590 1407
pycaret/regression/functional.py sha256=afB3KLIt0LVLMxpIurz9T5nu6P3IoP2CDpDK4V3Gq7k 93659
pycaret/regression/oop.py sha256=9tJG9BWyeaP0ZYqvhYsvykQeA3jtoPCAWZdS6qV2pmw 72204
pycaret/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/tests/conftest.py sha256=CmEx0aw8mKJU2lcFbQ5KnkkkryUTA6klSbgiugMO0-I 3842
pycaret/tests/test_anomaly.py sha256=i7FXPvreaFUDX5yIwnG_ytZyuHzhdM1FskFce91MZc8 2236
pycaret/tests/test_arules.py sha256=doL9gTi9otqeSgAR-uxKqlKiOGTKfMwtkoYNkZTnzgs 1296
pycaret/tests/test_check_fairness.py sha256=MyCc3r-npgqZG3g6I6piQY8gBDkdjvzIfbFJeEkRUpQ 1351
pycaret/tests/test_classification.py sha256=QpmRELWwAgTEnA_EDjzOpq1777rPJOhzrta-RvVGneI 6028
pycaret/tests/test_classification_parallel.py sha256=nLy6-leStyr8KzNs9loWa3A-gTY-2yDpZ8UG-zSFRdo 1212
pycaret/tests/test_classification_plots.py sha256=8_PggFIAHRMqXGlxMM7SeWmKseR_qdPUzaWhGfm9N1c 1731
pycaret/tests/test_classification_tuning.py sha256=AYU3yXIGEVbgC59Wfe0Vv5UgABEDbC-JOZzu4SilzYM 3412
pycaret/tests/test_clustering.py sha256=yjqWGctIhnx2CC8XVJfcwnJdWccCqF8baokrxzyw6kA 2197
pycaret/tests/test_convert_model.py sha256=tco0XT_zoxEmOBEQWzJHQUyF8eRnS-pMGA58DcN-HLU 1167
pycaret/tests/test_create_api.py sha256=hJ1pvG61c5qtqGWA2KzUmJGW3riJu_jgHqsZZM_o9pg 1149
pycaret/tests/test_create_app.py sha256=bqugPhqIMCNmPmypYLGIlv91xGb39bRat8gCUsJIFUQ 1221
pycaret/tests/test_create_docker.py sha256=An8UAVn8H4d3r8Kl20R_mv1Zwaw_rapT0CWMY8crtSA 1269
pycaret/tests/test_dashboard.py sha256=vM0rOXiPbGzlyfb6_6Ip-k1srYHrfWfyWDvXK2tVJB0 796
pycaret/tests/test_datasets.py sha256=R_CPqilVQ0y8luGZ3Zzza4GmkRmfKbDm4dwFJKe4lBs 2006
pycaret/tests/test_drift_report.py sha256=sh7IgGnrdUV26kX1HiCmrXBiOOIqx61u6V4jYQEKQeg 559
pycaret/tests/test_eda.py sha256=KarJf6brLfDpilHYsekgLYx3jOEAFLDqtXh2DYQgZtg 547
pycaret/tests/test_mlflow_artifacts.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/tests/test_multiclass.py sha256=Io-T_GVGYYqLMyZacWRjCgVhQBkh_VGt4JnOWlHZv8k 2783
pycaret/tests/test_nlp.py sha256=vI4ACCLyW4AoxAZgOkcsvemL2VURmENoQ6agIFJXHpY 5709
pycaret/tests/test_optimize_threshold.py sha256=r7Gz8Hj9zxnyI-0ZAPAHeBL2xZ3KMBVNcYyheZlNozI 770
pycaret/tests/test_overflow.py sha256=a4htqHjLPSs83yIfjrCl2mzZ95kv3aNCHQitoiDqoJg 594
pycaret/tests/test_persistence.py sha256=pVWYNxUJAfy7rPNMd66eWMN7FWJJI6r8VSGP2eti5GU 1149
pycaret/tests/test_pipeline.py sha256=Os_tUeoAnN0IrleCCqN5Fj2rBOjYWdAsrpG-BtUf76o 2369
pycaret/tests/test_preprocess.py sha256=2OA4wrX9KzJLiS6_uNyDe97sk1f20zF5x04UTCcS7uA 10852
pycaret/tests/test_probability_threshold.py sha256=MNNPMZcWTaAnleh7jha5UzwEAJILPWaMC0L0oFnwFL0 4649
pycaret/tests/test_regression.py sha256=zghEM803XlsgCnvu80WVtcDmZIPyvte0eOfoRBO41-s 5585
pycaret/tests/test_regression_parallel.py sha256=8NF6dEVzOAfYnGa20AxqTvWpC9as0BmfzIxVKiGyyAI 1211
pycaret/tests/test_regression_plots.py sha256=P8wi7fP4D8KrgariOGDf2LtiHG0G5d7F0JHBhPKMXsQ 1523
pycaret/tests/test_regression_tuning.py sha256=3W93Ml2mGl7OUMrTkMR8kySKeuJWXSCNjS3wNbjQFmo 3209
pycaret/tests/test_time_series_base.py sha256=HFh-PeTznTpMjvcVCyB5wPS87IrtmpHXGi10k4Wr8h8 12683
pycaret/tests/test_time_series_blending.py sha256=VsE0OR7cP-nV_unmlig7s5ikVHStolC9GO3SW2jAGlA 3119
pycaret/tests/test_time_series_exogenous.py sha256=APY5gryRM422VdA4EhYH13SzkuqjE4Qu_yj4mZatm8A 8574
pycaret/tests/test_time_series_indices.py sha256=qo6qkAT_XkZdk1gPNZxkaFnNFBAoK1gmRp12jLn2HYc 3097
pycaret/tests/test_time_series_metrics.py sha256=8SWz5yYp1OPhGeRSAvElypBpreIMW_mDqX1ZqieSqs8 2358
pycaret/tests/test_time_series_mlflow.py sha256=GVGLdd8YavMdGEGfghujqIYUjftnMXNsNMHH14Op0ZI 1641
pycaret/tests/test_time_series_models.py sha256=OS_z9D2OeMeBWoZMbmTvWA4jyIYUN2Ta__Ne19juDxI 3042
pycaret/tests/test_time_series_plots.py sha256=-vMrexvYFEYy3iA7wEHS6SnaqUUJ7Guc6bdHs5aCJ_c 7964
pycaret/tests/test_time_series_preprocess.py sha256=pET63GCHFUtcj9ANfI3EvFkiccZihExC0m3uPAtvh0Q 20196
pycaret/tests/test_time_series_setup.py sha256=Ys-Q1BISGwF7XAg-Oyae3Dac_t738vBXlh1kANDAFNs 11228
pycaret/tests/test_time_series_stats.py sha256=MoGZ9CMxsBViAlYrXC3gFZVHJWfI29tVLPCoO_cU4mk 7087
pycaret/tests/test_time_series_tune_base.py sha256=m3XyJVptJo2pH02DkTw7O5saDLjUlEEpI7apeWRN4kI 3891
pycaret/tests/test_time_series_tune_grid.py sha256=BZHm9YXzE75ZBLCPo3Zzo_JgtrR8qf8kTzItt11hWso 1534
pycaret/tests/test_time_series_tune_random.py sha256=Fi4KvnLtMnAdADLitvN23EWh_Y2cDiUXw0MtPencIBM 1550
pycaret/tests/test_utils.py sha256=lTwXQ3uPpgnKACi0dQC-8euiG8BRVY9zaGe66I1p2lg 6085
pycaret/tests/test_utils_datetime.py sha256=ipexrLD3PCBk2eC4tKetHkh4n-17EIHnFPhIjtz7ZZA 3584
pycaret/tests/time_series_test_utils.py sha256=Zlv5IGy1A80hhXm4kyx9Qg9hcP-HqJoegsLJymBFDPI 8594
pycaret/time_series/__init__.py sha256=7F_5HKUSFrzz2WW0XWmiZZpKJouXngaahxfJVTnWp3E 997
pycaret/time_series/forecasting/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pycaret/time_series/forecasting/functional.py sha256=2_BcfIDUUBhZwyTPfiqiGKItCShKXSPF6moPOyaskLw 56170
pycaret/time_series/forecasting/oop.py sha256=jUrlo1Q2ZVfnEetvmzE1yG-0xKOd9mQ4dzZ-aE9Q5cs 159946
pycaret/utils/__init__.py sha256=CmvKBKD6A62nsSEcjAGYHXjQqBppvRFcc7713UPUBE0 5873
pycaret/utils/_show_versions.py sha256=AQt9fViiprvqNS__VtwZ3ZSRRjqiS28WpmvH3Pj2P4g 2224
pycaret/utils/datetime.py sha256=hw8OQbF8_seXMEhYsGhxpcIpypgWDKzwkp4Gmcf6tBk 4284
pycaret/utils/time_series/__init__.py sha256=g_h_riGJ-hBujvlpr_X4cT5teG4E6VhPD0xHRtgSDyA 7646
pycaret/utils/time_series/forecasting/__init__.py sha256=EIwKsyt5OnOkM9wCzpxHfBGi1KrLAZ-sOOmzedxesT4 4085
pycaret/utils/time_series/forecasting/model_selection.py sha256=st459UAUBraWNn-tr2QnLPYq6WbFrlR2M1EPVjKU13w 20792
pycaret/utils/time_series/forecasting/models.py sha256=h_5PiWi0fkcEy2FALd4Tyj2RLvEZL3hh59v1GAbZoYg 4904
pycaret/utils/time_series/forecasting/pipeline.py sha256=sFBRCm3f9yjJwjVEiL4sncIX7AE1JMVYK1blHn0qmjI 3264
pycaret_ts_alpha-3.0.0.dev1649017462.dist-info/LICENSE sha256=vhGaknQ8SaKXExa4OPlzxddH53MeTQ7yG2t3_TamyG8 1085
pycaret_ts_alpha-3.0.0.dev1649017462.dist-info/METADATA sha256=eV5fCPkfNkadLP-bEC430_6TDEyw16h8_l4Mvo3mTtk 13489
pycaret_ts_alpha-3.0.0.dev1649017462.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
pycaret_ts_alpha-3.0.0.dev1649017462.dist-info/top_level.txt sha256=j0FvMjIfC1u7otX8fR5JwH5G5ra54yHcm2QsOSudXJQ 8
pycaret_ts_alpha-3.0.0.dev1649017462.dist-info/RECORD

top_level.txt

pycaret