nntemplate

View on PyPIReverse Dependencies (0)

0.0.5 nntemplate-0.0.5-py3-none-any.whl

Wheel Details

Project: nntemplate
Version: 0.0.5
Filename: nntemplate-0.0.5-py3-none-any.whl
Download: [link]
Size: 81757
MD5: a5f87acb747ace6cd93a79e1d25db4fd
SHA256: 80b9456a4c14154175acbc75fa436c14c48abb0d203ef148291a678acf958dce
Uploaded: 2023-03-12 02:11:45 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: nntemplate
Version: 0.0.5
Summary: Bundle of usefull tools for training segmentation or image classification neural networks.
Author-Email: Gabriel Lepetit-Aimon <gabriel.lepetit-aimon[at]polymtl.ca>
Project-Url: Source, https://github.com/gabriel-lepetitaimon/nn-template
Requires-Python: >=3.10
Requires-Dist: albumentations
Requires-Dist: numpy
Requires-Dist: opencv-python-headless
Requires-Dist: optuna
Requires-Dist: parse
Requires-Dist: pandas
Requires-Dist: pytorch-lightning
Requires-Dist: pyyaml
Requires-Dist: segmentation-models-pytorch
Requires-Dist: torch
Requires-Dist: torchgeometry
Requires-Dist: torchmetrics
Requires-Dist: torchvision
Requires-Dist: ttach
Requires-Dist: webcolors
Requires-Dist: wandb
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.38.4)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
nntemplate/__init__.py sha256=7qQ0jIvgrjo6uBQrq3kpFJjJcJtnaI2X8PqfgbILBhw 32
nntemplate/experiment.py sha256=KA8agN130YU35Gk7cIdrUwMJoFDQn8xzIx8u_oDm5qY 9086
nntemplate/hardware.py sha256=-7mR2PMq4MieMPW13m36tFt3O5qub4sDLstxLMxJS_g 1281
nntemplate/training.py sha256=4FjqxK8D2rMr1c9vJnBnA-sBFpEku5f0NILHAvFAUFg 4860
nntemplate/callbacks/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
nntemplate/callbacks/log_artifacts.py sha256=H02ecCLgtZKDaX9kVGxgAKigwNgKJUTatg0kW8LxBjE 2912
nntemplate/callbacks/optuna.py sha256=T-xheBMTyCkBWslD12c3vxTQB2fV9erOOZJAlVAOUaw 5447
nntemplate/config/__init__.py sha256=JYpNtpTluvRRoh8ktYZWaDaaZWaHi9ybeOHEuWaH96Y 1050
nntemplate/config/cfg_dict.py sha256=nNP7VYpJhNxnAgXJkNEo72QXLzj9Fo87H-_KO4lr_6k 27423
nntemplate/config/cfg_object.py sha256=6FyXsR8R67lVZdBIHLuOYXNGvUf2C47njSgx_YDdjWA 32785
nntemplate/config/cfg_parser.py sha256=i1UePtXfboE0f6Ok9Q6VNMSi7LE3oRF4pLn6wct-6oE 22095
nntemplate/data_augmentation/__init__.py sha256=l1GnERvgZ3AS7kGXRjXtJFAxjAaif8K6aWKxKRhe0gY 116
nntemplate/data_augmentation/data_augment.py sha256=WJ02blu5rV78yPVt35dQFfdAkNeS4WODJynb7fIQQPQ 25822
nntemplate/data_augmentation/random_dist.py sha256=hxDrXjDC3hMh2V3v7RdVfwJEyzJcQ4Vb-C04zxnlRCk 6010
nntemplate/datasets/__init__.py sha256=D2HuQOyFc6own_-W2S9Oex-RK8ksoSbgwbRWnfO_cjY 41
nntemplate/datasets/data_sources.py sha256=h8o7tQz6MzHUY6ZEgl8DYu80Y7FayAktbKC81MG0TlM 4490
nntemplate/datasets/dataset.py sha256=LyS-ZgM_lW1mknl_YyryQ1bcAN474o7HZvuSt1KBGHs 8874
nntemplate/datasets/hdf_py.py sha256=ChjmOPR4EkRYWanCkyC3ZhYq1HnRcSh05XfF-ZNrx_o 14455
nntemplate/datasets/path_utils.py sha256=MevEHEI0SC1Uxz8PkjpaRE9Cltdnlmfrhi2kH5UU0G8 5092
nntemplate/datasets/utils2d.py sha256=Klhcj9zJNIsb_VxCl36IiQiHOvddfFf1Y7ARrjgGQuw 9458
nntemplate/hyperparameters_tuning/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
nntemplate/hyperparameters_tuning/generic_optimizer.py sha256=aHHuyZaXTH7KmRQiCVDdbAXbAhQdqNAWQyl9pxfTFLE 3839
nntemplate/hyperparameters_tuning/optuna.py sha256=JEm9Gm6xmfpNS6maldUuCO0kMeN2lVSeQ62GBtXz3VQ 16988
nntemplate/misc/__init__.py sha256=jRfTSx80dDE3IcvTvIx4XEFU2rmQNtPCvvHKovJqeDI 29
nntemplate/misc/clip_pad.py sha256=Pj3VLCg9eJDDd4WrrCbYU3MyWG6_h56Iwk90dm_vIOY 4736
nntemplate/misc/function_tools.py sha256=f3mevcW9gM6evDG-nJ2ELPrB8NfzZJCsZ_FxNLu_GBc 3187
nntemplate/misc/lut.py sha256=oMVJ8Ijj8yce7gflvjNQlZSScYxtqdGMcd_bmhFLJzw 8672
nntemplate/model/__init__.py sha256=WCCdIrdHpeasb0Hv0S1SZe72a800bZ0_NVA8uRrLSNc 86
nntemplate/model/activation.py sha256=w5zwcljeaElL0HPVMbiJ0kZCIA1VADGjGpndHVjzqNQ 1639
nntemplate/model/common.py sha256=N_3qPC7Lllq0qRsNDtZp3_AcF_UPydhcEhY_ne18Lc0 5044
nntemplate/model/smp.py sha256=wOwe8z9CZg2oNKQ-K6oZqFe81c0CdVvFSP2KP1wOrI0 2588
nntemplate/model/unet.py sha256=H8dkpRr8IEcMSr852A_YVb1vn2mV9sYnfO-B6bBblyA 5207
nntemplate/model/wnet.py sha256=qtVEFlnGTyKuxIwwfWhSqZYqmXRKdMurw25OQk6MFxA 2168
nntemplate/task/__init__.py sha256=6atTy2lOkpt-mPWba5oVaWe4nvXnJ5JxgnytOFv9Vrk 207
nntemplate/task/optimizer.py sha256=Om13FRNf4wVTzmGiiFdVrI0PQvy66LZ5_AjgXJ_IvYg 878
nntemplate/task/segmentation2D.py sha256=btfZxXZ9e5maOdG8tj06oHTQnSOPJAEABaPJnUDrFA4 10689
nntemplate/task/task.py sha256=lJ8iEGxFKOd8HystvW7Ggy1079X-SN_pW2PHarsHTCk 1006
nntemplate/task/test_time_augment.py sha256=l9jUBYBMtMKHKmjFiNvLuh10H5U_fxWp2n6L6hP06yU 2831
nntemplate/task/losses/__init__.py sha256=tOHh58FyW-zlkoQMNYhO4l1JQaLfhzeNnj9RBHCMoog 96
nntemplate/task/losses/classification_losses.py sha256=UhWr-nwdmoowcDCvNYZ_g-m1oEjtZomJ2LxIN3XOdP4 720
nntemplate/task/losses/loss_core.py sha256=5jy-ySkFE6c0NqB3jayxpfhxi9CHOD2Lf6EpMVlXnOU 1011
nntemplate/task/losses/segmentation_losses.py sha256=BptVkei2ybl078nxGHkYUjq2vWkGWQPEoQabd8vTXrk 1774
nntemplate/task/lr_schedulers/__init__.py sha256=DO_QWmemkevntsKxuQV-zQ6ueknj_Bx3Ug8qyXvCVnA 93
nntemplate/task/lr_schedulers/schedulers_core.py sha256=MfbGSOABhJTmLHHk_A3vNjqS8QQ8A4XBN8yZ26sAZXo 590
nntemplate/task/lr_schedulers/timm_schedulers.py sha256=3MYaVJXkHRoMCxUjKzeoHdm-WISASDodNTOaGL6hYKI 2918
nntemplate/task/lr_schedulers/torch_schedulers.py sha256=IWRzxv4ZKHLQzbKNWwy1yUXn5RwqoIsFxWvEI6MW_VM 1312
nntemplate/task/metrics/__init__.py sha256=ge2mxJoHTXjctNhJT5NUZefkH9weNLxZ7u2GZq5MZFI 66
nntemplate/task/metrics/classification_metrics.py sha256=VmadKbmV8WSIbEEcrQwOf04X5vRmPjuuhtKra_KjsnU 6851
nntemplate/task/metrics/metrics_core.py sha256=IQHR6zZkCLNHRUcU2kwTzaL12BV5rJpSyMs2xfeDKF0 3275
nntemplate-0.0.5.dist-info/METADATA sha256=TAnORcfuap9bDXi83oKNz7FPGk9TQPeBcHkaUQYk3Ic 747
nntemplate-0.0.5.dist-info/WHEEL sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo 92
nntemplate-0.0.5.dist-info/top_level.txt sha256=cPoqLAUGX-sOi_jsBbdUBCPkzzNinOfIuQizWcV0RQU 11
nntemplate-0.0.5.dist-info/RECORD

top_level.txt

nntemplate