niaaml

View on PyPIReverse Dependencies (2)

2.1.0 niaaml-2.1.0-py3-none-any.whl

Wheel Details

Project: niaaml
Version: 2.1.0
Filename: niaaml-2.1.0-py3-none-any.whl
Download: [link]
Size: 77393
MD5: 233a46347c4a1520aae193e685d59ce5
SHA256: 4f889bb66fb94e37a97c7795f87a23b994afb3de793226575e9fad62399e4889
Uploaded: 2024-06-12 12:19:09 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: NiaAML
Version: 2.1.0
Summary: Python automated machine learning framework
Author: Luka Pečnik
Author-Email: lukapecnik96[at]gmail.com
Home-Page: https://github.com/firefly-cpp/NiaAML
Project-Url: Documentation, https://niaaml.readthedocs.io/en/latest/
Project-Url: Repository, https://github.com/firefly-cpp/NiaAML
License: MIT
Keywords: classification,NiaPy,scikit-learn,nature-inspired algorithms,feature selection,preprocessing
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.9,<4.0
Requires-Dist: loguru (<0.8.0,>=0.7.2)
Requires-Dist: niapy (<3.0.0,>=2.0.5)
Requires-Dist: numpy (<2.0.0,>=1.19.1)
Requires-Dist: pandas (<3.0.0,>=2.1.1)
Requires-Dist: scikit-learn (<2.0.0,>=1.1.2)
Requires-Dist: typer (<0.13.0,>=0.12.3)
Description-Content-Type: text/markdown
[Description omitted; length: 23480 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.8.1
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
niaaml/__init__.py sha256=93mPgU9Dt0EPIs52Zy_yxkDETSFA31Sw63nerUJ2CUg 853
niaaml/classifiers/__init__.py sha256=Ktck0AIfGpN08iVD1mjKRWEf6xF-aHIbfcJwCwYzgpU 1616
niaaml/classifiers/ada_boost.py sha256=tdwyfdEk8OOT-C6Lm9T-svouKE_NQUSO6klh8uiaNMU 2835
niaaml/classifiers/bagging.py sha256=BVfPyiSFUglujU9D1Ju0IoEn77_4laK22cwBe9eATRU 2914
niaaml/classifiers/classifier.py sha256=iCAS-JK-_5eLUUC6RZyFYysNwkFwQc0sNurwx4FQInU 894
niaaml/classifiers/decision_tree.py sha256=v_2ShPfxxmTIdNN9aqOm7JcUHzCjxPCULqmFYv87UZM 2959
niaaml/classifiers/extremely_randomized_trees.py sha256=iOVCIvcWMtvoy6fnx8TSOPA-zGv25uFClcDlw4oelUo 2955
niaaml/classifiers/gaussian_naive_bayes.py sha256=gJdFTjzsMOgPqv4cBYrXvJ8USH5JZvukZy467U69vH4 2609
niaaml/classifiers/gaussian_process.py sha256=PbqO6qHVC7MUpb-YgzJJG5QRaWvrkwkxYTgk7RkUGOY 3084
niaaml/classifiers/k_neighbors.py sha256=dTb-nwJTw3H5cLM5o8E63IQ4Zb_HqV__LE5ajNeUKZw 2914
niaaml/classifiers/linear_svc.py sha256=XLWM6VBptc1BscJQwmFztiUZ42CGY1W4OzCa0yoCll8 2915
niaaml/classifiers/multi_layer_perceptron.py sha256=xdnGNjs0_D5xouqF-7Hha5OJRJvs9Bh2_LtlAP0_7rk 3107
niaaml/classifiers/quadratic_driscriminant_analysis.py sha256=tV3HRI1CBzGxiwdO754t882BUD25jBDH8sD6_n0eoyY 2814
niaaml/classifiers/random_forest.py sha256=M06PRniZAewlnWEUukTmv7_5x9H3RnrLr-BmhomGvQk 2902
niaaml/classifiers/regression_decision_tree.py sha256=-Tp8SpUNy51yrrZo5JdNbK-LSLUZX2lsDGJ7iMJwVlo 2813
niaaml/classifiers/regression_gaussian_process.py sha256=i6PzRCy82Lfc3ue5QcNLRkbsDMEvEFvnmLEqj5sChrQ 2747
niaaml/classifiers/regression_lasso.py sha256=Yl350pv6WdOVnA22a3l7Dzd6bu4aP574Nc4nOda-irQ 2819
niaaml/classifiers/regression_linear_model.py sha256=e-dlOXv4jLhX_RVc4NK0w1NmRyanBgmOBCQ9EuRw1Ao 2666
niaaml/classifiers/regression_ridge.py sha256=BgEPWorZlvF-tje2EWhnj7YjBSpu4eLidcNSy0tUoMA 2823
niaaml/classifiers/utility.py sha256=TB_6RDSrbofzW5uftHSz5BLj-gEMCygBvXSK3OB6-to 2401
niaaml/cli.py sha256=PhXgDOi_ztSXHEdVzQN3Iym7o2BuYVFL0K6CGiTbjhw 3617
niaaml/data/__init__.py sha256=HrJiZ1G42h0mcoM9WtdL1r4O7n5jK4sSGzffbbwZp-o 221
niaaml/data/basic_data_reader.py sha256=zl5vsrurJzz3-oLQipkaEPE0gQzvHT1mIDYYGikVa-c 743
niaaml/data/csv_data_reader.py sha256=7WAO0sBYPqCN4_C_GonH5ZS5Qxn2DNSnLfYJ9UV0oWs 1727
niaaml/data/data_reader.py sha256=92hh7KT5P2bHvweptC0VfcidYLmt7EFomcyqsseHVYc 1391
niaaml/fitness/__init__.py sha256=UXKgcpqOUB5g0cOBRN0qsTK3xYYsjk5230MtoVgroFc 495
niaaml/fitness/accuracy.py sha256=rjv_GhQZlV0h-mGiq6DNJ3pS3-wv-wyUDXOaD6GM-Wc 977
niaaml/fitness/cohen_kappa.py sha256=smupb0h2gc7Oaim22w_ylgqwcUZ-u3uOLdBizglb5_k 1000
niaaml/fitness/f1.py sha256=T2WQWThf6Wzva6YJwkvNMUir1lz969rcMZWPfo5Sy08 966
niaaml/fitness/fitness_function.py sha256=nka1n2r_KhW-A7SQ5Tg1pOVANlb04LA8GkSRBUYzhFU 1261
niaaml/fitness/mse.py sha256=bcw_RLto3xFcub8DcyrXP-i1-34yrYNZy6oDIByh_dg 1218
niaaml/fitness/precision.py sha256=UPy-VMeiP5k7C1w9v2fWR193nkUoxmkhv-ykbFlLyCM 1004
niaaml/fitness/r2.py sha256=0dfFg-MMb0x2fxfVR_gwcooI51DeIb9nzQuIDKsEIWk 1140
niaaml/fitness/utility.py sha256=vnexJ0CMlmuwBVrLdS3HBZe55rPvuFS4uAZ6_Ru4v0c 876
niaaml/logger.py sha256=sN8A8NvIFrg_8GYqqVki1tu2w0bU3lttpnoyGPQ4_vE 1451
niaaml/pipeline.py sha256=k9S9fIEBd0N24JuLjEkUzogp_PANLRUwUg7Euhge-YY 22867
niaaml/pipeline_component.py sha256=rmU5ZLHgdfISupSYrbYisfOgoxh7xkFQWeGDptNLCwQ 1903
niaaml/pipeline_optimizer.py sha256=WpXyGSEXEFFLxhKkSs-BhCTrJE2KeVv0HNaRet1Dp-g 21156
niaaml/preprocessing/__init__.py sha256=rQpr8ui3opOa42Pti4rXGrLfL2cxGfcJnNtI2Yt3rLk 397
niaaml/preprocessing/encoding/__init__.py sha256=r2D9FlD960Zs4EtgtN7lZCD7mNT2tZzOV2DWAOgCYEU 403
niaaml/preprocessing/encoding/feature_encoder.py sha256=tVAO4NlqqSTxjcic9QJEBJS0nDuTBPE1lJMyvbPriD4 1097
niaaml/preprocessing/encoding/one_hot_encoder.py sha256=HK4jXjOg4WXVLiATHDriDgx6Dz-Rr7NYpf6TB4wLXNY 1745
niaaml/preprocessing/encoding/utility.py sha256=l6-HbBMkvzIApjTCfaRuCBolBjqTJtkMzCnq594qq2g 1667
niaaml/preprocessing/feature_selection/__init__.py sha256=5OGD9_gHM1v4hBx5htIP1vQpMzy4ZHhkdvplTE16OZE 1511
niaaml/preprocessing/feature_selection/_feature_selection_threshold_problem.py sha256=tXaHxFVW2pxrosGtyLH-cdOrW_xf1Kz-DshOTATqDcA 2022
niaaml/preprocessing/feature_selection/bat_algorithm.py sha256=rI0ig9wK2Msw6rxpiD3J52a4XcwKmaJzoxErsu_AYdo 3345
niaaml/preprocessing/feature_selection/differential_evolution.py sha256=8DEiMGT7J1pzwF3T65aCfR6qi4MQNvdcRXvayPX1-Ik 3229
niaaml/preprocessing/feature_selection/feature_selection_algorithm.py sha256=C7DM780kwajQgDDhpyuL-6U9YEoxnCxMni4u72AMk6I 805
niaaml/preprocessing/feature_selection/grey_wolf_optimizer.py sha256=foLkQflabbS0YQ4_6jZXnp2gZJieAqvc4CcOMglzlgs 2787
niaaml/preprocessing/feature_selection/jDEFSTH.py sha256=9xVOeRi6WL5jvhwRQAEII1mXJzcsyib7p8YiF5gqE5o 2963
niaaml/preprocessing/feature_selection/particle_swarm_optimization.py sha256=CuJWtb5AY1mQ_oE1EzKjSSn4NFsrZ9AldpKOQinWfaM 3219
niaaml/preprocessing/feature_selection/select_k_best.py sha256=r2uk6_kocSZTCLoqA7ESXupW6RtvBj2SIBlkNJVrQX8 2608
niaaml/preprocessing/feature_selection/select_percentile.py sha256=DJO00qXzgnX56i5eCkC6dulcMEBz0x-4eLmUfEuJTrc 2216
niaaml/preprocessing/feature_selection/select_univariate_regression.py sha256=AWG4q3NMfhfNBB9c70TFaS67u1mjLeErQD1gqzab-7o 2086
niaaml/preprocessing/feature_selection/utility.py sha256=YrxGTFHHqMfQmKE-3IKmsYggkxi2bl8fkiqpPq3mRVM 1816
niaaml/preprocessing/feature_selection/variance_threshold.py sha256=Aso3S8xSi_E7H4YVfSCehrUKxMPfufWcYB1IMc5jlp8 1994
niaaml/preprocessing/feature_transform/__init__.py sha256=U-tOxQlmXy78AbarGRCnmway9RgYE_QeV4P_Otmbbok 823
niaaml/preprocessing/feature_transform/feature_transform_algorithm.py sha256=NnUCmDgDFYPbNc06IVoXx_xPo_25y28DWZNTe2TYSDg 930
niaaml/preprocessing/feature_transform/max_abs_scaler.py sha256=BvV4Ln8IiSwK7Qz6hnjgFpxiLGzrd-02-939yxmZ7KY 1762
niaaml/preprocessing/feature_transform/normalizer.py sha256=8e2ljAREKThbNS21Ucy_NCZVRdGCbjCmp4Z0SPNfhgw 1944
niaaml/preprocessing/feature_transform/quantile_transformer.py sha256=0HOgl5892KpwfCI9mcExjeA8chITSfc1cwMYSOUfBPk 1957
niaaml/preprocessing/feature_transform/robust_scaler.py sha256=hvUrIvKw2wZ-bIJJbDV--DEcgyCls74BgyXOGlNTxMs 1885
niaaml/preprocessing/feature_transform/standard_scaler.py sha256=Vd7gV1EFZb4u0I89gV2Bi9LaP5Am1Uf3F51eXmSSjQ4 1716
niaaml/preprocessing/feature_transform/utility.py sha256=TcN_Fl_t6DTI8Y8jgfIAYjYy9OY_sTtoxBUQrpa-GKA 1117
niaaml/preprocessing/imputation/__init__.py sha256=oz669TFI5Kw7lCMbEt3o5j0SQa2LrDR3eKy1GgnIb9o 345
niaaml/preprocessing/imputation/imputer.py sha256=eWEruASP9vJYVI8QVt_4mQWqZDXH8nHpG3Pjoe27ieA 1023
niaaml/preprocessing/imputation/simple_imputer.py sha256=24ecHtM5iaj91ozvkvU4cx3Ow5JTpUPaSeEneflovvs 1788
niaaml/preprocessing/imputation/utility.py sha256=XJd0HlvEtXhmCofsdf0Ynns_ErckdQZw8kbg9ndnXpY 1342
niaaml/preprocessing/preprocessing_algorithm.py sha256=UqdX4gDWrWCrSroCQ6EGhNwMDTYFiv8kk9LuHhHMZng 372
niaaml/utilities.py sha256=FuNFp5CAQ9N6Z1yIGe6oQSyUwTq-XBhjMwnNcwBX9oY 5937
niaaml-2.1.0.dist-info/LICENSE sha256=d14RghahlqSXtwMDES5VJG3uJQRzS-cSdmNdB0hzPqY 1069
niaaml-2.1.0.dist-info/METADATA sha256=p0aUDYE1-IP7leq8sbIxNDb0mxxvsVy4sj1LrgkxkLI 24750
niaaml-2.1.0.dist-info/WHEEL sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4 88
niaaml-2.1.0.dist-info/entry_points.txt sha256=_oPaOkTS-kQvgTZhlfNT2ENbtd0gPKGv1T7viMV_MRE 42
niaaml-2.1.0.dist-info/RECORD

entry_points.txt

niaaml = niaaml.cli:main