netcal
View on PyPI — Reverse Dependencies (5)
1.3.6 | netcal-1.3.6-py3-none-any.whl |
Wheel Details
Project: | netcal |
Version: | 1.3.6 |
Filename: | netcal-1.3.6-py3-none-any.whl |
Download: | [link] |
Size: | 236304 |
MD5: | 7921e38a7b986663a2e653534771373b |
SHA256: | d847c8bb3f625d9084068f576d0f36a5116b3c42049eec7de30d755b91699b25 |
Uploaded: | 2024-08-08 13:14:08 +0000 |
dist-info
METADATA · WHEEL · RECORD · top_level.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | setuptools (72.1.0) |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
docs/source/conf.py | sha256=ni6axeODP1mLMAnSwlWbQe5WPYZ2wcXtDLo8lWYloXI | 3127 |
examples/__init__.py | sha256=mG64SGlyCFi2DX9yIepcQIjhBv210diZZNt9forMQBo | 340 |
examples/classification/CIFAR.py | sha256=MMvqq202F6GImBmMw9vPr3rwK8NxIN4f2IQbXrMeTy0 | 5710 |
examples/classification/Evaluation.py | sha256=TFeamO39OQIg8q7wkhWUG6R--sVNZ-80KEj1jGGdDsQ | 4605 |
examples/classification/__init__.py | sha256=HCg7yyl4PRtCm8KW8Ycm9iZNCxedCzPeq8ck5Tt3Dkc | 414 |
examples/classification/utils.py | sha256=tGapRKGRGAm86PiGsyA62jpfWI6sPLw7QMfJ627F134 | 11650 |
examples/detection/Calibration.py | sha256=etT43qK4CGr-kvqxTYTMiGo4dPuF6QILK9I298onIHE | 7384 |
examples/detection/Evaluation.py | sha256=iuT6dzQZFwlRIFxd7a0prZ_Agir-Gc4LAJPtlQZ3Tyw | 19414 |
examples/detection/Features.py | sha256=X4hP4jGOudHO7qB9vElkWBVNgP7ihmG_Y-ThPfQvkEU | 4201 |
examples/detection/Helper.py | sha256=YfuyDc0E0vDNNvprt3CXIxwrQljCkrWN146OS34E9-c | 8026 |
examples/detection/__init__.py | sha256=Qwc0YL5YBn3OTwMJNisKUg-iPtSKjWAZYf_6lmmZ7cg | 340 |
examples/regression/__init__.py | sha256=3250d7J9z3qP-3kQlwocqyd_P_N-T9UmgeJb8wtU0rU | 341 |
examples/regression/artificial/__init__.py | sha256=ht1l-61HTsTOhx7TGYKe5gHtVy5oOjOm8mUSQSe8Nj0 | 471 |
examples/regression/artificial/data.py | sha256=-ANSpByqvko44ZE_tBMl2R3K4z4WEaddYoUR8aLL-ok | 1725 |
examples/regression/artificial/main.py | sha256=unwZquIIUUJ7KjGvmNFdi0Aj3Ok_NejO5MPey2NWJ8M | 7152 |
examples/regression/artificial/visualize.py | sha256=5bRE7SCRmoXzl3Dy1hrLIFxWGIFlnDq1msux20c6Cnw | 5021 |
examples/regression/multivariate/__init__.py | sha256=waLsPnenRzGjWBfxmvIrGznj9eQ9fHmCD1-np68uQCU | 492 |
examples/regression/multivariate/data.py | sha256=VOdZSH216LOnz4gFhs69MYUEJjzLd2Ckv9ceZMX-sGI | 1382 |
examples/regression/multivariate/main.py | sha256=AGYQggdWqAMJMYSCTuyiRPZEWb1jNd5jC47MWDsllfk | 11978 |
examples/regression/multivariate/visualize.py | sha256=ZNuCnoCX2YGvzR_K2H1UL8DZP5w-bDeTmuTzld71Seo | 3533 |
netcal/AbstractCalibration.py | sha256=fU_KaOHvP-jbQ0wov-Jm-3j-0u7ouj6VeaAu8MK-Sgc | 26390 |
netcal/Context.py | sha256=wHeAdXW7CevaoYqplXbebIxWdt2FYqxzF6nZvVuJP_A | 1811 |
netcal/Decorator.py | sha256=bmKxDm-QKFzAqMBFFiJoaPs3TgnJ1HrEQ7xpcuJjQ10 | 4439 |
netcal/Helper.py | sha256=brh-cuTMPR-l1JBygE3JRBRG417wJMpVtmBQBKOLz6M | 25224 |
netcal/Stats.py | sha256=VnhhDHNngXsP7F9KBUrVS2rNyjNxPAX40P-I-LvcefU | 3308 |
netcal/__init__.py | sha256=76UvKd7x5szLljRX5gzbOtTwz1TKTw-5b3n7l-ExaYg | 1658 |
netcal/binning/BBQ.py | sha256=ziEcNLyn1pezHYas7oYNSAAZP3lqarXltf-Zw_nfDks | 12495 |
netcal/binning/ENIR.py | sha256=hManDOV9QZ6GpUdb5FUcXtoyBj8T8Kf8OYCRmJsv5oc | 13100 |
netcal/binning/HistogramBinning.py | sha256=kblNRvudF77pOp1ZkY8foOXuANR88s8GyXoN7WeXQA0 | 14687 |
netcal/binning/IsotonicRegression.py | sha256=6OyFJuZ548WJpkuspynJjjSUbKXvUdmDDu1MT2JXGY0 | 7626 |
netcal/binning/NearIsotonicRegression.py | sha256=ptUZxpEEhGd-T97aywp4yHyzozq3fMeD6OizOGe4Yow | 15958 |
netcal/binning/__init__.py | sha256=US58RyyjX6mcOdmpf2NuFp2qw2gLHSEizUlHMjt4zr4 | 806 |
netcal/metrics/Miscalibration.py | sha256=YmNcksCY7Z6HBGb3M-EBPLk4VYa28rSrI0ckVISfr6s | 33464 |
netcal/metrics/__init__.py | sha256=VdvsQcYwCd5rZsffa7DIXGIrwk9J0igbK9W9RhwAS24 | 1148 |
netcal/metrics/confidence/ACE.py | sha256=ZdO__-NmS0M5HwhRJdBXGkrTdMv5zlTy0fPSkNYNsjI | 7261 |
netcal/metrics/confidence/ECE.py | sha256=dJYat_rCOkeV1H3CKpdB8F545fCo4Ft8IxmqhwDoKPs | 7293 |
netcal/metrics/confidence/MCE.py | sha256=1pCcezmBrk5ddctlbC4NkRRkUVBajRSYvnQEgiUZdMA | 7164 |
netcal/metrics/confidence/MMCE.py | sha256=jVgqYFn7F2XNDig0W9MZBO0vFk3AQVNI6DtpzDdMjTQ | 6796 |
netcal/metrics/confidence/__init__.py | sha256=qdim5XtzUDQXFHnghuqJQltKPv0nvAm-wzv7lIdTYY4 | 673 |
netcal/metrics/regression/ENCE.py | sha256=RNxPcGkxycmTY8xiiDCLErWNOySMp4g_6aIaHt9hViM | 7302 |
netcal/metrics/regression/NLL.py | sha256=cfk6AATn01vqIllxID0LFUqc85hDhajQF7kxgDms0hs | 8732 |
netcal/metrics/regression/PICP.py | sha256=KFSUGsFWcVMcNT7ksFxBO1kLlKROaAE-yybrV6GyQKk | 9246 |
netcal/metrics/regression/QCE.py | sha256=0lONIGmR6uM6uZD5B6H3WV45_h6jPmFfbujlPgS-yX8 | 20049 |
netcal/metrics/regression/QuantileLoss.py | sha256=WKyw8ZRmDXw8E0qNSTjZ1qvQWr20IRXgU_ikNRjIoHg | 5658 |
netcal/metrics/regression/UCE.py | sha256=RHXqwwEC_xCZ_HBhXatHK1BEMkGedvOX_QN58saL-Xw | 6978 |
netcal/metrics/regression/__init__.py | sha256=AWHDbwJ1PfcXVnykiPXucHO4My7BlX_u63-FCK2VJmw | 812 |
netcal/presentation/ReliabilityDiagram.py | sha256=RB4kMwUUg-vy0r8xWkZjviQZodE94_K0NOR-3dBNCv4 | 26297 |
netcal/presentation/ReliabilityQCE.py | sha256=WtN6gWcZdxjKIKEHS6wfWtG58WKWz6veyjlf_QPLIks | 9158 |
netcal/presentation/ReliabilityRegression.py | sha256=5YAMlBC9NVMoIXmp-1vVtlLLuRMueFPiZdkxFa0BBT0 | 9305 |
netcal/presentation/__init__.py | sha256=i-6BzOkdfNmNKTyTPtpJQsWFIgMmQ8uB3K4CzSzGsmo | 775 |
netcal/regression/IsotonicRegression.py | sha256=CvRA2UnHaNVuhnNKEpYI8xHgd9Rc0lX8lACLNaUss0k | 14691 |
netcal/regression/VarianceScaling.py | sha256=bw_14MIksK9huHsq942YHHrxu57Vyoke1tuVIP8xZrc | 9691 |
netcal/regression/__init__.py | sha256=Ie0Qpx_c4aaJfVM875hrEEP2B15Pbbi51qor6p8Jn8g | 974 |
netcal/regression/gp/AbstractGP.py | sha256=siSvXY0EdIEPjYhDQFPWPeMDxJyKj6i4ZGH9p6UXcFk | 38886 |
netcal/regression/gp/GPBeta.py | sha256=wB4o6Q-l7TjY_a85bkK3fH2GA4g8Re8X6l_Dlg99QKM | 14234 |
netcal/regression/gp/GPCauchy.py | sha256=jQza2x8CA3oQACTCU0cYwU3VQoy5ezZbJeaoW-zjtJY | 10091 |
netcal/regression/gp/GPNormal.py | sha256=Ito3LgpNNiApGGuwHj9h-tj2fSC2bJCsRxEsjrDTbwo | 12374 |
netcal/regression/gp/__init__.py | sha256=t-e77GPOs017Zziffu7r41ZfwzBNhUxbgkQKZHA40P8 | 845 |
netcal/regression/gp/kernel/GaussianRBFKernel.py | sha256=oaEhngu3942aLXjuJBHXcl5LzAl2MLCImHrDiwHdrlw | 6841 |
netcal/regression/gp/kernel/__init__.py | sha256=7ApOj1tMEg1ZTnjcowufvxoIc5lxgIgV-tP_PiXl8FM | 644 |
netcal/regression/gp/likelihood/BetaLikelihood.py | sha256=IWxa7uWMD1QkxLqN7O1rJiHl_xRN4EArQ5AkDTfzjZo | 20314 |
netcal/regression/gp/likelihood/CauchyLikelihood.py | sha256=cSCLFi_XMzR6oPyeY650zRYTiPGKtYl4tEry0rV-3ZI | 3356 |
netcal/regression/gp/likelihood/ScaledMultivariateNormalLikelihood.py | sha256=aakjxhNCjXc5CKK_EzAkomFefgAHKA_Vn2em69CwNjQ | 8707 |
netcal/regression/gp/likelihood/ScaledNormalLikelihood.py | sha256=80pkRYEt8a8WygLoqS18_gIz0VILmsd2pFoP73BZVhg | 3083 |
netcal/regression/gp/likelihood/__init__.py | sha256=xfuIY4dX8CRnKpQJboR6t8Ki-nP02iNsYgMm6HcwhfM | 916 |
netcal/regularization/ConfidencePenalty.py | sha256=XeDxlYUCp6Ckz7DETe71FTaLO3cT0xo8wYV_4OXBGcM | 4319 |
netcal/regularization/DCAPenalty.py | sha256=m7ebdZAgoUZGZ21-yBdS5o5K2SZFgrYgw7D3O5_N9gU | 1743 |
netcal/regularization/MMCEPenalty.py | sha256=m1PaxTgHzHVVpM2zUwqHEmedVX_U56WYuFhBgySD7_E | 3309 |
netcal/regularization/__init__.py | sha256=0EeIh72FOw06v_x_iBDmCnXI6Bd4YDS4k4rdZOY8uVw | 784 |
netcal/scaling/AbstractLogisticRegression.py | sha256=j2Sfj4LBWemCfGWN2IWrspRJNn79c8gd1wz-C-DXNPA | 40228 |
netcal/scaling/BetaCalibration.py | sha256=nUaDFGKfHSf6EkeLbDc0iqSN9xar4qSUWnH5T03rt3E | 19637 |
netcal/scaling/BetaCalibrationDependent.py | sha256=R7TB-yV7NDIQJ6oj6aj1oxVCXTfP5p6GLUFwJmnNUHw | 15789 |
netcal/scaling/LogisticCalibration.py | sha256=ZVZnM6ZfTVszApeCxCWDVdveS_ITXViSNSXx_yywEeI | 14549 |
netcal/scaling/LogisticCalibrationDependent.py | sha256=18T5g_cVrn02h65sTzbX0OVIEHn5JxZXg4EwJkqPqD0 | 14310 |
netcal/scaling/TemperatureScaling.py | sha256=26LW6g1eNqbmVfD0jhWt5HXEm9Xv6_hjDGrIlbukwcQ | 4583 |
netcal/scaling/__init__.py | sha256=YfMzNa6-o7iAW_99p5hrCI2bKb270Py76Rz02dQSsJU | 1053 |
netcal-1.3.6.dist-info/LICENSE.txt | sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA | 11358 |
netcal-1.3.6.dist-info/METADATA | sha256=kHpoqEnKeBF1RyPSXQSQa6L8xxnJ2QBEx3K59HqyreM | 47425 |
netcal-1.3.6.dist-info/WHEEL | sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs | 91 |
netcal-1.3.6.dist-info/top_level.txt | sha256=ll-mZ_m46kHPpkVBiEFuHYhpyML6FMOu1YvvkriLUYU | 21 |
netcal-1.3.6.dist-info/RECORD | — | — |
top_level.txt
docs
examples
netcal