netcal

View on PyPIReverse Dependencies (5)

1.3.6 netcal-1.3.6-py3-none-any.whl

Wheel Details

Project: netcal
Version: 1.3.6
Filename: netcal-1.3.6-py3-none-any.whl
Download: [link]
Size: 236304
MD5: 7921e38a7b986663a2e653534771373b
SHA256: d847c8bb3f625d9084068f576d0f36a5116b3c42049eec7de30d755b91699b25
Uploaded: 2024-08-08 13:14:08 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: netcal
Version: 1.3.6
Summary: The net:cal calibration framework is a Python 3 library for measuring and mitigating miscalibration of uncertainty estimates, e.g., by a neural network.
Author: Fabian Küppers
Author-Email: fabian.kueppers[at]efs-techhub.com
Maintainer: Fabian Küppers
Maintainer-Email: fabian.kueppers[at]efs-techhub.com
Project-Url: Homepage, https://github.com/EFS-OpenSource/calibration-framework
Project-Url: Documentation, https://efs-opensource.github.io/calibration-framework
License: Apache-2.0
Keywords: netcal,calibration,uncertainty,neural,network,confidence,classification,object,detection,regression
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Development Status :: 5 - Production/Stable
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.6
Requires-Dist: numpy (>=1.18)
Requires-Dist: scipy (>=1.4)
Requires-Dist: matplotlib (<3.8,>=3.3)
Requires-Dist: scikit-learn (>=0.24)
Requires-Dist: torch (>=1.9)
Requires-Dist: torchvision (>=0.10.0)
Requires-Dist: tqdm (>=4.40)
Requires-Dist: pyro-ppl (>=1.8)
Requires-Dist: tikzplotlib (==0.9.8)
Requires-Dist: tensorboard (>=2.2)
Requires-Dist: gpytorch (>=1.5.1)
Description-Content-Type: text/markdown
License-File: LICENSE.txt
[Description omitted; length: 46034 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (72.1.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
docs/source/conf.py sha256=ni6axeODP1mLMAnSwlWbQe5WPYZ2wcXtDLo8lWYloXI 3127
examples/__init__.py sha256=mG64SGlyCFi2DX9yIepcQIjhBv210diZZNt9forMQBo 340
examples/classification/CIFAR.py sha256=MMvqq202F6GImBmMw9vPr3rwK8NxIN4f2IQbXrMeTy0 5710
examples/classification/Evaluation.py sha256=TFeamO39OQIg8q7wkhWUG6R--sVNZ-80KEj1jGGdDsQ 4605
examples/classification/__init__.py sha256=HCg7yyl4PRtCm8KW8Ycm9iZNCxedCzPeq8ck5Tt3Dkc 414
examples/classification/utils.py sha256=tGapRKGRGAm86PiGsyA62jpfWI6sPLw7QMfJ627F134 11650
examples/detection/Calibration.py sha256=etT43qK4CGr-kvqxTYTMiGo4dPuF6QILK9I298onIHE 7384
examples/detection/Evaluation.py sha256=iuT6dzQZFwlRIFxd7a0prZ_Agir-Gc4LAJPtlQZ3Tyw 19414
examples/detection/Features.py sha256=X4hP4jGOudHO7qB9vElkWBVNgP7ihmG_Y-ThPfQvkEU 4201
examples/detection/Helper.py sha256=YfuyDc0E0vDNNvprt3CXIxwrQljCkrWN146OS34E9-c 8026
examples/detection/__init__.py sha256=Qwc0YL5YBn3OTwMJNisKUg-iPtSKjWAZYf_6lmmZ7cg 340
examples/regression/__init__.py sha256=3250d7J9z3qP-3kQlwocqyd_P_N-T9UmgeJb8wtU0rU 341
examples/regression/artificial/__init__.py sha256=ht1l-61HTsTOhx7TGYKe5gHtVy5oOjOm8mUSQSe8Nj0 471
examples/regression/artificial/data.py sha256=-ANSpByqvko44ZE_tBMl2R3K4z4WEaddYoUR8aLL-ok 1725
examples/regression/artificial/main.py sha256=unwZquIIUUJ7KjGvmNFdi0Aj3Ok_NejO5MPey2NWJ8M 7152
examples/regression/artificial/visualize.py sha256=5bRE7SCRmoXzl3Dy1hrLIFxWGIFlnDq1msux20c6Cnw 5021
examples/regression/multivariate/__init__.py sha256=waLsPnenRzGjWBfxmvIrGznj9eQ9fHmCD1-np68uQCU 492
examples/regression/multivariate/data.py sha256=VOdZSH216LOnz4gFhs69MYUEJjzLd2Ckv9ceZMX-sGI 1382
examples/regression/multivariate/main.py sha256=AGYQggdWqAMJMYSCTuyiRPZEWb1jNd5jC47MWDsllfk 11978
examples/regression/multivariate/visualize.py sha256=ZNuCnoCX2YGvzR_K2H1UL8DZP5w-bDeTmuTzld71Seo 3533
netcal/AbstractCalibration.py sha256=fU_KaOHvP-jbQ0wov-Jm-3j-0u7ouj6VeaAu8MK-Sgc 26390
netcal/Context.py sha256=wHeAdXW7CevaoYqplXbebIxWdt2FYqxzF6nZvVuJP_A 1811
netcal/Decorator.py sha256=bmKxDm-QKFzAqMBFFiJoaPs3TgnJ1HrEQ7xpcuJjQ10 4439
netcal/Helper.py sha256=brh-cuTMPR-l1JBygE3JRBRG417wJMpVtmBQBKOLz6M 25224
netcal/Stats.py sha256=VnhhDHNngXsP7F9KBUrVS2rNyjNxPAX40P-I-LvcefU 3308
netcal/__init__.py sha256=76UvKd7x5szLljRX5gzbOtTwz1TKTw-5b3n7l-ExaYg 1658
netcal/binning/BBQ.py sha256=ziEcNLyn1pezHYas7oYNSAAZP3lqarXltf-Zw_nfDks 12495
netcal/binning/ENIR.py sha256=hManDOV9QZ6GpUdb5FUcXtoyBj8T8Kf8OYCRmJsv5oc 13100
netcal/binning/HistogramBinning.py sha256=kblNRvudF77pOp1ZkY8foOXuANR88s8GyXoN7WeXQA0 14687
netcal/binning/IsotonicRegression.py sha256=6OyFJuZ548WJpkuspynJjjSUbKXvUdmDDu1MT2JXGY0 7626
netcal/binning/NearIsotonicRegression.py sha256=ptUZxpEEhGd-T97aywp4yHyzozq3fMeD6OizOGe4Yow 15958
netcal/binning/__init__.py sha256=US58RyyjX6mcOdmpf2NuFp2qw2gLHSEizUlHMjt4zr4 806
netcal/metrics/Miscalibration.py sha256=YmNcksCY7Z6HBGb3M-EBPLk4VYa28rSrI0ckVISfr6s 33464
netcal/metrics/__init__.py sha256=VdvsQcYwCd5rZsffa7DIXGIrwk9J0igbK9W9RhwAS24 1148
netcal/metrics/confidence/ACE.py sha256=ZdO__-NmS0M5HwhRJdBXGkrTdMv5zlTy0fPSkNYNsjI 7261
netcal/metrics/confidence/ECE.py sha256=dJYat_rCOkeV1H3CKpdB8F545fCo4Ft8IxmqhwDoKPs 7293
netcal/metrics/confidence/MCE.py sha256=1pCcezmBrk5ddctlbC4NkRRkUVBajRSYvnQEgiUZdMA 7164
netcal/metrics/confidence/MMCE.py sha256=jVgqYFn7F2XNDig0W9MZBO0vFk3AQVNI6DtpzDdMjTQ 6796
netcal/metrics/confidence/__init__.py sha256=qdim5XtzUDQXFHnghuqJQltKPv0nvAm-wzv7lIdTYY4 673
netcal/metrics/regression/ENCE.py sha256=RNxPcGkxycmTY8xiiDCLErWNOySMp4g_6aIaHt9hViM 7302
netcal/metrics/regression/NLL.py sha256=cfk6AATn01vqIllxID0LFUqc85hDhajQF7kxgDms0hs 8732
netcal/metrics/regression/PICP.py sha256=KFSUGsFWcVMcNT7ksFxBO1kLlKROaAE-yybrV6GyQKk 9246
netcal/metrics/regression/QCE.py sha256=0lONIGmR6uM6uZD5B6H3WV45_h6jPmFfbujlPgS-yX8 20049
netcal/metrics/regression/QuantileLoss.py sha256=WKyw8ZRmDXw8E0qNSTjZ1qvQWr20IRXgU_ikNRjIoHg 5658
netcal/metrics/regression/UCE.py sha256=RHXqwwEC_xCZ_HBhXatHK1BEMkGedvOX_QN58saL-Xw 6978
netcal/metrics/regression/__init__.py sha256=AWHDbwJ1PfcXVnykiPXucHO4My7BlX_u63-FCK2VJmw 812
netcal/presentation/ReliabilityDiagram.py sha256=RB4kMwUUg-vy0r8xWkZjviQZodE94_K0NOR-3dBNCv4 26297
netcal/presentation/ReliabilityQCE.py sha256=WtN6gWcZdxjKIKEHS6wfWtG58WKWz6veyjlf_QPLIks 9158
netcal/presentation/ReliabilityRegression.py sha256=5YAMlBC9NVMoIXmp-1vVtlLLuRMueFPiZdkxFa0BBT0 9305
netcal/presentation/__init__.py sha256=i-6BzOkdfNmNKTyTPtpJQsWFIgMmQ8uB3K4CzSzGsmo 775
netcal/regression/IsotonicRegression.py sha256=CvRA2UnHaNVuhnNKEpYI8xHgd9Rc0lX8lACLNaUss0k 14691
netcal/regression/VarianceScaling.py sha256=bw_14MIksK9huHsq942YHHrxu57Vyoke1tuVIP8xZrc 9691
netcal/regression/__init__.py sha256=Ie0Qpx_c4aaJfVM875hrEEP2B15Pbbi51qor6p8Jn8g 974
netcal/regression/gp/AbstractGP.py sha256=siSvXY0EdIEPjYhDQFPWPeMDxJyKj6i4ZGH9p6UXcFk 38886
netcal/regression/gp/GPBeta.py sha256=wB4o6Q-l7TjY_a85bkK3fH2GA4g8Re8X6l_Dlg99QKM 14234
netcal/regression/gp/GPCauchy.py sha256=jQza2x8CA3oQACTCU0cYwU3VQoy5ezZbJeaoW-zjtJY 10091
netcal/regression/gp/GPNormal.py sha256=Ito3LgpNNiApGGuwHj9h-tj2fSC2bJCsRxEsjrDTbwo 12374
netcal/regression/gp/__init__.py sha256=t-e77GPOs017Zziffu7r41ZfwzBNhUxbgkQKZHA40P8 845
netcal/regression/gp/kernel/GaussianRBFKernel.py sha256=oaEhngu3942aLXjuJBHXcl5LzAl2MLCImHrDiwHdrlw 6841
netcal/regression/gp/kernel/__init__.py sha256=7ApOj1tMEg1ZTnjcowufvxoIc5lxgIgV-tP_PiXl8FM 644
netcal/regression/gp/likelihood/BetaLikelihood.py sha256=IWxa7uWMD1QkxLqN7O1rJiHl_xRN4EArQ5AkDTfzjZo 20314
netcal/regression/gp/likelihood/CauchyLikelihood.py sha256=cSCLFi_XMzR6oPyeY650zRYTiPGKtYl4tEry0rV-3ZI 3356
netcal/regression/gp/likelihood/ScaledMultivariateNormalLikelihood.py sha256=aakjxhNCjXc5CKK_EzAkomFefgAHKA_Vn2em69CwNjQ 8707
netcal/regression/gp/likelihood/ScaledNormalLikelihood.py sha256=80pkRYEt8a8WygLoqS18_gIz0VILmsd2pFoP73BZVhg 3083
netcal/regression/gp/likelihood/__init__.py sha256=xfuIY4dX8CRnKpQJboR6t8Ki-nP02iNsYgMm6HcwhfM 916
netcal/regularization/ConfidencePenalty.py sha256=XeDxlYUCp6Ckz7DETe71FTaLO3cT0xo8wYV_4OXBGcM 4319
netcal/regularization/DCAPenalty.py sha256=m7ebdZAgoUZGZ21-yBdS5o5K2SZFgrYgw7D3O5_N9gU 1743
netcal/regularization/MMCEPenalty.py sha256=m1PaxTgHzHVVpM2zUwqHEmedVX_U56WYuFhBgySD7_E 3309
netcal/regularization/__init__.py sha256=0EeIh72FOw06v_x_iBDmCnXI6Bd4YDS4k4rdZOY8uVw 784
netcal/scaling/AbstractLogisticRegression.py sha256=j2Sfj4LBWemCfGWN2IWrspRJNn79c8gd1wz-C-DXNPA 40228
netcal/scaling/BetaCalibration.py sha256=nUaDFGKfHSf6EkeLbDc0iqSN9xar4qSUWnH5T03rt3E 19637
netcal/scaling/BetaCalibrationDependent.py sha256=R7TB-yV7NDIQJ6oj6aj1oxVCXTfP5p6GLUFwJmnNUHw 15789
netcal/scaling/LogisticCalibration.py sha256=ZVZnM6ZfTVszApeCxCWDVdveS_ITXViSNSXx_yywEeI 14549
netcal/scaling/LogisticCalibrationDependent.py sha256=18T5g_cVrn02h65sTzbX0OVIEHn5JxZXg4EwJkqPqD0 14310
netcal/scaling/TemperatureScaling.py sha256=26LW6g1eNqbmVfD0jhWt5HXEm9Xv6_hjDGrIlbukwcQ 4583
netcal/scaling/__init__.py sha256=YfMzNa6-o7iAW_99p5hrCI2bKb270Py76Rz02dQSsJU 1053
netcal-1.3.6.dist-info/LICENSE.txt sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA 11358
netcal-1.3.6.dist-info/METADATA sha256=kHpoqEnKeBF1RyPSXQSQa6L8xxnJ2QBEx3K59HqyreM 47425
netcal-1.3.6.dist-info/WHEEL sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs 91
netcal-1.3.6.dist-info/top_level.txt sha256=ll-mZ_m46kHPpkVBiEFuHYhpyML6FMOu1YvvkriLUYU 21
netcal-1.3.6.dist-info/RECORD

top_level.txt

docs
examples
netcal