neroRL

View on PyPIReverse Dependencies (0)

0.0.4 neroRL-0.0.4-py3-none-any.whl

Wheel Details

Project: neroRL
Version: 0.0.4
Filename: neroRL-0.0.4-py3-none-any.whl
Download: [link]
Size: 109213
MD5: 96e4ad384528ab9f405ec3da2d339413
SHA256: b6f788ebc77f5744f20aea915d560427d6c880af1a1868e965e4b278a55d6fd1
Uploaded: 2022-04-01 06:11:19 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: neroRL
Version: 0.0.4
Summary: A library for Deep Reinforcement Learning (PPO) in PyTorch
Home-Page: https://github.com/MarcoMeter/neroRL
Project-Url: Github, https://github.com/MarcoMeter/neroRL
Project-Url: Bug Tracker, https://github.com/MarcoMeter/neroRL/issues
Keywords: Deep Reinforcement Learning,PyTorch,Proximal Policy Optimization,PPO,Recurrent,Recurrence,LSTM,GRU
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.6
Requires-Dist: dm-env (==1.5)
Requires-Dist: docopt
Requires-Dist: gym
Requires-Dist: gym-minigrid (==1.0.2)
Requires-Dist: jinja2
Requires-Dist: matplotlib
Requires-Dist: opencv-python
Requires-Dist: pandas
Requires-Dist: procgen
Requires-Dist: pycolab (==1.2)
Requires-Dist: pygame
Requires-Dist: pyglet
Requires-Dist: ruamel.yaml
Requires-Dist: scipy
Requires-Dist: windows-curses; sys_platform == "win32"
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 2602 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
neroRL/__init__.py sha256=2GWffEF1rjyrveUGdfR8y3cl3JUnX0gJjr8Ryy_u4JQ 21
neroRL/enjoy.py sha256=yaAEFS_IgMhibxXFGtbkkUDt7B6EEn2YZ1cJ25TpEhU 8413
neroRL/eval.py sha256=oArW7RkJmcokeqbtGsCCRLELpVr5C4wncULZHRYHAQk 6027
neroRL/eval_checkpoints.py sha256=aaVIL0VMFLm-pYz2c5tNKoNGcwfYjK9GlgvkZ8euWM8 6030
neroRL/evaluator.py sha256=cbFKO2s11-1g0bcREx9VeHhWCXMBL_vTQYSXx3bTesQ 8943
neroRL/train.py sha256=UHI6IOq2zDKtsFcGm7ybEwxDVwMp7u_FMfvQlzQZsRA 2009
neroRL/tune.py sha256=TBFA1kJTK8ucjEE3qcsnHlWTzdLymAjMbaaJbYT5LOA 2287
neroRL/environments/__init__.py sha256=79V9-eqzhcv00Qjr2ByUhCtwZkm04F-PCzM8Jm6uv1A 49
neroRL/environments/ballet_wrapper.py sha256=qyECJ3gsGRShoShLUC8ZyHLilLVDLYg2z6B5qHAGiqk 6988
neroRL/environments/cartpole_wrapper.py sha256=qJWjRqz7M_6fGOaMK0kVUyevKkv4sTI-YzMZ0GNbkh4 5967
neroRL/environments/env.py sha256=2LH0594sTEDGDn4agv2z-Tk3d274GVxGr7-JEyCAjFg 2677
neroRL/environments/minigrid_vec_wrapper.py sha256=_f4oaPL_J9nB4DaAugz1JFXYZ3_Obj0gxmht337PLrg 9768
neroRL/environments/minigrid_wrapper.py sha256=k8I2RHWi9JoEGlgtCvk3zW9Y8tnK2-cgnyM5UgZHxOw 10540
neroRL/environments/mortar_minigrid.py sha256=sgQ5SifBFO9tbKXPT-71vigYxW-cD80hj75FgEuaoAo 14445
neroRL/environments/obstacle_tower_env.py sha256=2QD_n5DLjE5dAKEYOp1oZ7zKfGsK5lS4Q7dErJHeGWw 21000
neroRL/environments/obstacle_tower_wrapper.py sha256=NDkzbAhJWB3UH3YQ8g0HY8EWXZPwx3iKSEyspxD5Zdw 10468
neroRL/environments/procgen_wrapper.py sha256=nkK8eZqBzpEDeGtaLAViCkiY_n1p4Cb_33YHheO-y90 8614
neroRL/environments/unity_wrapper.py sha256=ptxS0WJa_JlK6IvW6NrDt3FI0m9_AQRoyZCF4xU6bR0 13163
neroRL/environments/wrapper.py sha256=-odausXb3dCxwalB2_lleKl64DfiY6S1MxZeWPA4FJk 3784
neroRL/environments/ballet/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/environments/ballet/ballet_environment.py sha256=NyTPMjpfXjk44Eg8BPIQWxJKTOgj3uJtBZGiKLFEsf4 13915
neroRL/environments/ballet/ballet_environment_core.py sha256=Ha8foMAjlU-XfKOTvK4MEa4sYnJWJreJnKU9y0OCoPY 13106
neroRL/environments/ballet/ballet_environment_test.py sha256=Vbqbu8W-GoaKsfYek2ACGndAlPbkc-s_GiXQ-tUqlG8 3410
neroRL/environments/wrappers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/environments/wrappers/frame_skip.py sha256=xvkjc6d3Shh3osdBW3JxQtY5dXjb4jsl4nWLedphGUM 3301
neroRL/environments/wrappers/grayscale_visual_observation.py sha256=BnXjSRMgalLDNiwY2iQGnhcj-W6TDn3alB0230W6Xf0 4411
neroRL/environments/wrappers/last_action_to_obs.py sha256=Xx5d7UrNVyDK35Gk6caWYvCQFBf3yp_IRTRM2aH-nGs 4347
neroRL/environments/wrappers/last_reward_to_obs.py sha256=eLeuUo1KSftQHTV-m6__RIDsC2a0GyD_rNlnOkfg3SA 3569
neroRL/environments/wrappers/pytorch_shape.py sha256=hcgBYRcohBjVUVVvFx8NrsaoGxpF0ZgH9hMzQHweEio 3640
neroRL/environments/wrappers/scaled_visual_observation.py sha256=JkB7cWl4LZZI2qWc7tR6WDZRb_iEkOyDyzPvjgP3OJw 4910
neroRL/environments/wrappers/stacked_observation.py sha256=D0a4QGhoeG0UPri3QrZLTRw27WVVPWWSmL9g8D0N90Q 6140
neroRL/nn/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/nn/actor_critic.py sha256=PU7TEa4W3XXu9lJBJ7n43IUEMM6ORNXPYbOY2U1_zuU 18736
neroRL/nn/base.py sha256=XeQHhzecr5bpq1cwOhc4TX_WHTLmhx9wSkCHYv4qctg 10884
neroRL/nn/body.py sha256=8GZbFLk943-_pGA5MGfBf_W47OxKMNUEGQG5jTw-0bY 1799
neroRL/nn/encoder.py sha256=27KE96_-j1G1IWuJdwksnrjiJBP-EAa6CnVQnNcxaf8 8700
neroRL/nn/heads.py sha256=CTW3Q5RQYMvoxISm12vPxdZqi5AkJX0IOqzn90uDcLQ 4367
neroRL/nn/module.py sha256=pQjOjqebM5eEQapR8JihpA-Y10QQb81rASqlQ92TMGM 2354
neroRL/nn/recurrent.py sha256=reMLeoyuI33M3ti07e2IwezsjtWTDERksYsAzAZ-9to 9126
neroRL/sampler/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/sampler/buffer.py sha256=6rEo-c9qRToAsow9YZClPFE0rHjaVuF48FaClthU5G4 16087
neroRL/sampler/episode_sampler.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/sampler/trajectory_sampler.py sha256=dd1wOUtdbOjQpm2tdaRwCP_ME04vc9wVASbKCnrDQMo 9122
neroRL/trainers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/trainers/policy_gradient/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/trainers/policy_gradient/base.py sha256=Ymr_QA-oVAYw0pwuzqSrnUcZlWKIpWZhNL0dgJYOfMk 17330
neroRL/trainers/policy_gradient/ppo_decoupled.py sha256=4hF31fUK3q2tbYIqXSoDDZshGFbHLwbaDY_Jrj88dVY 17053
neroRL/trainers/policy_gradient/ppo_shared.py sha256=iOU8g3cuvv0xowRJZ-NIUYYkouV3x_1WKxgUkFIimgY 10058
neroRL/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
neroRL/utils/decay_schedules.py sha256=ulODkOqvOQS_ufuiZZaCSeRLx515jf7uc_QbIYwYEfQ 990
neroRL/utils/grid_search.py sha256=zioO5PWZvkkyJbQguIKHy2P3qjseXrovOVqXavQtsiE 7478
neroRL/utils/monitor.py sha256=EP5vYeNg-kMTnitc_QodyXIBKJEl25QJHKNxC6qeCxQ 6182
neroRL/utils/utils.py sha256=T1E5NttMN2ktA6Uyp6PUXZdbZej6pY1ACz-3od2e4bE 2128
neroRL/utils/video_recorder.py sha256=UMwTdgckBmky9Qgdib5Yqv5RV3agvzRh7lNin8sLxlQ 16029
neroRL/utils/worker.py sha256=J_X_v1bgEX3rkeQT0JehhawaoBnkpbMw1NEaq94sfAs 2525
neroRL/utils/yaml_parser.py sha256=aS9sDOf9SkvwN51im4olesOFyl3UVonMKL8Kmr7I6vc 13502
neroRL-0.0.4.dist-info/LICENSE sha256=8DbjwiLD6NuQCf0UzdibFxd8DUXI95K5iIe4cc1Cj1k 1091
neroRL-0.0.4.dist-info/METADATA sha256=bi64ExOEkawjQpeuqMfXyDR1S18TT7o60xeZk7Vm2PQ 3682
neroRL-0.0.4.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
neroRL-0.0.4.dist-info/entry_points.txt sha256=WjRbYbHEAwebfXdaCuLQvs8guLCdn50h7yjGVTKJ2S8 171
neroRL-0.0.4.dist-info/top_level.txt sha256=S57jNlQz4VPvrSCMIRqQ5cuqkLeYmzJ6a-omMW_j_PQ 7
neroRL-0.0.4.dist-info/RECORD

top_level.txt

neroRL

entry_points.txt

nenjoy = neroRL.enjoy:main
neval = neroRL.eval:main
neval-checkpoints = neroRL.eval_checkpoints:main
ntrain = neroRL.train:main
ntune = neroRL.tune:main