movie-recommend

View on PyPIReverse Dependencies (0)

0.0.9 movie_recommend-0.0.9-py3-none-any.whl

Wheel Details

Project: movie-recommend
Version: 0.0.9
Filename: movie_recommend-0.0.9-py3-none-any.whl
Download: [link]
Size: 1866278
MD5: 74683ed5bd1b4dd19d4ce465234defa2
SHA256: 8e610dcebf23b3aa18e79f0bbe18af52fb8e667200f850d1a29f2dc326c72661
Uploaded: 2023-12-13 09:34:47 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: movie-recommend
Version: 0.0.9
Summary: Movie recommendation
Author: Group_7
Requires-Dist: annotated-types (==0.6.0)
Requires-Dist: anyio (==3.7.1)
Requires-Dist: click (==8.1.7)
Requires-Dist: exceptiongroup (==1.1.3)
Requires-Dist: Faker (==20.0.3)
Requires-Dist: fastapi (==0.104.0)
Requires-Dist: h11 (==0.14.0)
Requires-Dist: httptools (==0.6.1)
Requires-Dist: idna (==3.4)
Requires-Dist: joblib (==1.3.2)
Requires-Dist: numpy (==1.26.1)
Requires-Dist: pandas (==2.1.2)
Requires-Dist: pydantic (==2.4.2)
Requires-Dist: pydantic-core (==2.10.1)
Requires-Dist: python-dateutil (==2.8.2)
Requires-Dist: python-dotenv (==1.0.0)
Requires-Dist: pytz (==2023.3.post1)
Requires-Dist: PyYAML (==6.0.1)
Requires-Dist: scikit-learn (==1.3.2)
Requires-Dist: scipy (==1.11.3)
Requires-Dist: six (==1.16.0)
Requires-Dist: sniffio (==1.3.0)
Requires-Dist: starlette (==0.27.0)
Requires-Dist: threadpoolctl (==3.2.0)
Requires-Dist: typing-extensions (==4.8.0)
Requires-Dist: tzdata (==2023.3)
Requires-Dist: unicorn (==2.0.1.post1)
Requires-Dist: uvicorn (==0.23.2)
Requires-Dist: uvloop (==0.19.0)
Requires-Dist: watchfiles (==0.21.0)
Requires-Dist: websockets (==12.0)
Requires-Dist: sqlalchemy
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
etl/__init__.py sha256=PyEP9wzendtl04n09cBsLIwUREmY3g9U4wE5jJFVr5o 72
etl/utils.py sha256=3aXXN4fcNU8CgaLVJMcdZutHMils66-ru5i5xMOsm_U 37
etl/api/__init__.py sha256=4v_r1AvtCB_kQ6AjwVTFBQxMto-mYKpQfeGlHovllvg 16
etl/api/run.py sha256=6pEql0xkDO2TlZGr50-VkGnIRCupzCBpKd3pKucgCMA 109
etl/api/utils.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
etl/api/api/__init__.py sha256=Bhdqr7K_wINJMagmvs5rl_d942zeLDSAP5LgZ5jzCzg 41
etl/api/api/api.py sha256=Jbqjx6H8za6yJwIYjAx9sukJVuOGvxANzdxFp5bSH-o 6979
etl/api/api/database.py sha256=Zknj4bSHOl0TcyBFNRZvRLS4E0_mPsPfTtsDpfj5j_g 795
etl/api/api/recommender.py sha256=RCPzlJkvzmu-ndGOY16UKa0RCKvFgOiYFs8I5noqm34 2582
etl/data_preperation/__init__.py sha256=SBeoX8Z6z_bwgEsVFazlcIuNPEAl2PfyO6LHIqFeM74 107
etl/data_preperation/data_generator.py sha256=_s2PVSBAZZ1CGyhVB0j6Xpe5FiYDwrhJ0qDCrVEGYYI 1821
etl/data_preperation/schema.py sha256=2a3IgSzVAA8qC7nBM_EVVjCmmV83pLSb1TpguBfaApM 5286
etl/data_preperation/sql_interactions.py sha256=7CF2H9t8bCCqG3HovwGF6iMnHmwOrsxJvsG0xdn8_FA 8037
etl/logger/__init__.py sha256=XbDU1Xjvhx2sMfXFN4k_ruEwtyz-tEiI5P3rnP84iqY 39
etl/logger/logger.py sha256=PKemBkVLddelMBjrm149MPR93JiTlU5cxRg4AA5zShg 1496
etl/movie_recommender/__init__.py sha256=x2Vp0MWyLVEvVpfaVHGHitmOdLlpBf81rKG-AafoNi4 381
etl/movie_recommender/check.py sha256=WcJ_Tx1m5j6wTdlJUPsHQHmcfFQdWj44cqvqBKy9zXI 1392
etl/movie_recommender/database.py sha256=Zknj4bSHOl0TcyBFNRZvRLS4E0_mPsPfTtsDpfj5j_g 795
etl/movie_recommender/kki.py sha256=bbvFWxUX6hgUtZ8iheV-P7lXHYrX3tbN5iK3hSza5sY 75
etl/movie_recommender/recommender.py sha256=RCPzlJkvzmu-ndGOY16UKa0RCKvFgOiYFs8I5noqm34 2582
etl/movie_recommender/setup.py sha256=_iieDaaO3mB6-hcmY7scYKwAlhDQ4zE9QyHn4InB_9M 134
etl/movie_recommender/temp.db sha256=z-QOui2av1FVrjt9NQ8yEerkYk66A-WfQwILdoCXGN4 4452352
movie_recommend-0.0.9.dist-info/METADATA sha256=FAcD7U8mmqFWZ4M6ulmXYAFBmnbQUv67QDZ5HsKtK4o 1217
movie_recommend-0.0.9.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
movie_recommend-0.0.9.dist-info/top_level.txt sha256=wuLkCbis2lqxc1FOElol-cyYjFXOv9rtzYcFjyZEYSw 4
movie_recommend-0.0.9.dist-info/RECORD

top_level.txt

etl