modularbayes

View on PyPIReverse Dependencies (0)

0.1.4 modularbayes-0.1.4-py3-none-any.whl

Wheel Details

Project: modularbayes
Version: 0.1.4
Filename: modularbayes-0.1.4-py3-none-any.whl
Download: [link]
Size: 85452
MD5: b900114f8573d5e33211be43748f446f
SHA256: ac1b28eaa79900ba080b45634c5c9083323daec0a34465f60851f8187b9a9dcb
Uploaded: 2023-06-24 18:24:31 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: modularbayes
Version: 0.1.4
Summary: Modular Bayesian Inference.
Author: Chris Carmona
Author-Email: carmona[at]stats.ox.ac.uk
Maintainer-Email: carmona[at]stats.ox.ac.uk
Home-Page: https://github.com/chriscarmona/modularbayes
License: MIT
Keywords: modular bayesian inference cut smi posterior probability distribution
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.8
Requires-Dist: absl-py
Requires-Dist: chex
Requires-Dist: distrax (>=0.1.2)
Requires-Dist: dm-haiku
Requires-Dist: flax
Requires-Dist: jax
Requires-Dist: matplotlib
Requires-Dist: ml-collections
Requires-Dist: numpy
Requires-Dist: optax
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 4938 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.40.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
examples/epidemiology/flows.py sha256=bjQDoLGkj6QuYFgMnaUK_x8yOoSmCrPyS8WI5vw8khA 9453
examples/epidemiology/log_prob_fun.py sha256=HDKYaafptQTb-RIKtlFzmqPSbXNL-r_HESsDvI-dbX0 4840
examples/epidemiology/main.py sha256=tkMuEU5mns3g1vF4Cf8F301hsBna-t6t3MQqfkM8-kk 1637
examples/epidemiology/plot.py sha256=vaiBEtak9pvDUuiqGQ_u3O2ICKeTZy7r4SgdlgygtZU 6526
examples/epidemiology/sample_mcmc.py sha256=9vnz4JjQ7TPjI7GnE-MAS_LymZdZ_wUPlDwDmFCV_0Y 17477
examples/epidemiology/train_flow.py sha256=oQedpApgj8mCyTQ-dLVQTAKsqCkNw4eb-UFA4lvVwLA 15694
examples/epidemiology/train_vmp_flow.py sha256=O1ILgDDfN4wHRlpOa28iC95N8f-d37dereVhotkeoys 10767
examples/epidemiology/train_vmp_map.py sha256=3v-bcdk7I3Kdl4nWhynKMaDTAzaZ2M80BHR4zo-Su-4 13390
examples/epidemiology/configs/flow_mf.py sha256=434-3nwc-Dzjl9maq_ci6qGIEJBFk-BHOWlv5ztwdv4 2058
examples/epidemiology/configs/flow_mf_vmp_map.py sha256=b_YWYFQo0av4EKPZPvkLALJtFpaXLi9Ap_YUfWoCjLs 2366
examples/epidemiology/configs/flow_nsf.py sha256=pTrXJeZpsmjUPZFeqiN-4vQHswX3c5L6A-H8cr6FIHQ 2467
examples/epidemiology/configs/flow_nsf_vmp_flow.py sha256=VC8MXn9mUflHBRiuCTMOLHSBZz0MRbguu8Omsox36RU 2549
examples/epidemiology/configs/flow_nsf_vmp_map.py sha256=XhHSBo5mjxbyPCmxOZmKheLrSgJS2_X2xOxF6IJChL4 2779
examples/epidemiology/configs/mcmc.py sha256=cufBuNAu3QN1BvPIhtjNEWYB5p7dzjFTYUz_y-fi8Zs 742
examples/epidemiology/data/__init__.py sha256=HiQFS6bEs4uIezHwmeczvyUhT3IJNDW4BF-mp0ITfjI 135
examples/epidemiology/data/load.py sha256=pZ3htcPgI_pEuieJgWxGRvTQJlnrb9I-0fa8j8Zl1Ng 822
examples/random_effects/flows.py sha256=Lhx1hdtXSIvSxmQff3VrxStfDdH03K030_87dg8h6Hg 7639
examples/random_effects/log_prob_fun.py sha256=ieaabkn_qZanQjBlY2ZQ8oNX0oMZeR0rx0pQLk9FODI 3164
examples/random_effects/main.py sha256=tkMuEU5mns3g1vF4Cf8F301hsBna-t6t3MQqfkM8-kk 1637
examples/random_effects/plot.py sha256=LS5VTo94qnyARyvd0Kni9lconHtswxQpFG0sxV9FOOM 5650
examples/random_effects/sample_mcmc.py sha256=7kuLTgTGZmVKw1ZrqlI_0qcw0DkXDdztRFFa8Mvh_u8 17434
examples/random_effects/train_flow.py sha256=iQCJZkYGOEeelqmHFOWYZttg0xkgdVtUSqil4tfQ73s 18117
examples/random_effects/train_vmp_flow.py sha256=BBnnfu_RWwmO-AS6ophk-0Xzv_k6lf9WAPVSZhVjuzU 16758
examples/random_effects/train_vmp_map.py sha256=kqdmHTLf09qObWwvuzd1ZHwM_FZcMorvA36-YJ0aqHU 18590
examples/random_effects/configs/flow_nsf_cut1.py sha256=nTwWlubmGJr_coxmIDoaZXWcjMT-t2G1N_xY9N4A1Us 2595
examples/random_effects/configs/flow_nsf_cut2.py sha256=CETa7DUSEiyNIqDgyIGcnjJgowD8URRm_I83D6sL9_A 2537
examples/random_effects/configs/flow_nsf_cut3.py sha256=SfPgQsxeJ13Fhrj1PL0wR3kmI-bcEBzADPyZgVMjfQ8 2594
examples/random_effects/configs/flow_nsf_full.py sha256=EIJd8c3RS7b7IF9y-chZC3f-gs6ZJoYjL4mcP64VvUg 2512
examples/random_effects/configs/flow_nsf_vmp_flow.py sha256=YBXz7feKPLRorXcWk77RC3xQigD1yOVWuiDUgnMa2tc 3100
examples/random_effects/configs/flow_nsf_vmp_map.py sha256=ZKuZKzXy8bCuJYQeNF_my_gsQrxcMmDnD90SoOHmUms 3171
examples/random_effects/configs/mcmc_cut1.py sha256=nYQIe18mdmo5ZxpOg7X35cepk_wq0g0VjrBYV8i8ryk 874
examples/random_effects/configs/mcmc_cut2.py sha256=SYDJMJjkfvmWdlUTrQ1mhgQ8BERNZVwzTrB9QPOkR2o 877
examples/random_effects/configs/mcmc_cut3.py sha256=3uCZBalCt2G6nXVNrTAw6B9yrMc5Ao51o8v3AQ8HaWM 874
examples/random_effects/configs/mcmc_full.py sha256=Cvw09wJkDhOmPT1HJwhUnEFI6S0rem05OBpIa8aYgkM 830
modularbayes/__init__.py sha256=FbQSAEM54ETMAcvLUeFQJN5SZAxTqiYRZXCvMyA3cr8 2068
modularbayes/_src/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
modularbayes/_src/typing.py sha256=-69nu1ORVviRL5PG4jUDnBwKaQKwJeWQyHGeMY6M2dE 1459
modularbayes/_src/bijectors/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
modularbayes/_src/bijectors/blockwise.py sha256=psxBqLH3a52RiVcC_NzSImW0wolZMrBPvw7kT_y4fUk 4245
modularbayes/_src/bijectors/conditional_bijector.py sha256=Su_UjH70hRPY-h7-DDeYByeVz80YXaRRz-egl6O4hYg 1663
modularbayes/_src/bijectors/conditional_chain.py sha256=dbeV_rLfKFQP9Uj6nExeWWA-yCibd0SKRdWLtqQR3xc 2456
modularbayes/_src/bijectors/conditional_masked_coupling.py sha256=cD_XTyS757-dhYYODjINOxRWqa878ZuAdJ2-tlNzWIg 1920
modularbayes/_src/conditioners/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
modularbayes/_src/conditioners/base.py sha256=2Cc6MCk-chIA1zfBZ7C_43j3hR6Ews2P6RfM4y8Buk8 2850
modularbayes/_src/distributions/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
modularbayes/_src/distributions/conditional_transformed.py sha256=dR5dMY6fZmVEdt8Rz643Q40M94DvD25iROxZ45G5sWY 2873
modularbayes/_src/distributions/transformed.py sha256=ziApuxZ7e23WXbAraKqg36CRKhtihBz4MVA73Dkqbd0 712
modularbayes/_src/metaposterior/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
modularbayes/_src/metaposterior/vmp_map.py sha256=Avnhi9-V37ZWRrm3kb67hO7esOvnuB6vysbpR8CxvDU 2203
modularbayes/_src/smi/elbo.py sha256=OB8eRk-DTc8XMkCDupr_Mbbr6iXY11yAhi3aDw5k1vY 6252
modularbayes/_src/smi/sampling.py sha256=L6-ZKqmYOTCC39jypxS-whvdpcRp2QwJHRVAKqlKkmU 4797
modularbayes/_src/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
modularbayes/_src/utils/misc.py sha256=kE3lxZ_75CrCF-zPc72AfZyhCXbdLOGj-8qSB2Ru7DM 3840
modularbayes/_src/utils/training.py sha256=JVnqqmjSwqe2u5e3Fv0_Ix1QrZ9APupEEKdT1ge7kxY 882
requirements/requirements-devel.txt sha256=kuHvZmEcdHtcghgQj0T5Ne9bCynPJuvvnwRZlYW6c4M 26
requirements/requirements-setup.txt sha256=sIWP5ivfIje2BFD32B9hoe-TiczktmaPrewXP1Uowho 43
requirements/requirements-tests.txt sha256=7-1oSHt78FuF5irOo1vnh3vE5abVcdc71uRwmcw6mrA 14
requirements/requirements.txt sha256=zXcTGLbGCi-qwqm7xaF3UamU12zAMSEPWvMb0gEYRbs 84
modularbayes-0.1.4.dist-info/LICENSE sha256=ey1E7sVLXbP0WfyqIj-S_hLGEe2Ob4xmkhPIQO1QquQ 1070
modularbayes-0.1.4.dist-info/METADATA sha256=HMOkHcw8XH67AsKaag3J_PYxFSsVPyIBQZWvQFBL6NY 6174
modularbayes-0.1.4.dist-info/WHEEL sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 92
modularbayes-0.1.4.dist-info/top_level.txt sha256=kzUxTEQm-hUKAlX8SSDY1goLuloBsZGYjUgEMNqGyq0 35
modularbayes-0.1.4.dist-info/RECORD

top_level.txt

examples
modularbayes
requirements