ml-stars

View on PyPIReverse Dependencies (2)

0.2.0 ml_stars-0.2.0-py2.py3-none-any.whl

Wheel Details

Project: ml-stars
Version: 0.2.0
Filename: ml_stars-0.2.0-py2.py3-none-any.whl
Download: [link]
Size: 61602
MD5: 136031c3b6fc9e0a25d5e4d812bcf4d1
SHA256: d24c8ee3e5ec926b5383b9b566f139c28794ef1d97601c7c589883c8b8073920
Uploaded: 2023-10-24 22:02:03 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: ml-stars
Version: 0.2.0
Summary: Primitives and Pipelines for Time Series Data.
Author: MIT Data To AI Lab
Author-Email: dailabmit[at]gmail.com
Home-Page: https://github.com/sintel-dev/ml-stars
License: MIT license
Keywords: mlstars
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Requires-Python: >=3.8,<3.12
Requires-Dist: Keras (<2.15,>=2.4)
Requires-Dist: mlblocks (>=0.6.1)
Requires-Dist: numpy (<2,>=1.17.4)
Requires-Dist: pandas (<3,>=1)
Requires-Dist: scikit-learn (<1.2,>=0.22)
Requires-Dist: scipy (<2,>=1.4.1)
Requires-Dist: statsmodels (<0.15,>=0.12.0)
Requires-Dist: tensorflow (<2.15,>=2.2)
Requires-Dist: xgboost (<2,>=0.72.1)
Requires-Dist: protobuf (<4)
Requires-Dist: bumpversion (<0.6,>=0.5.3); extra == "dev"
Requires-Dist: pip (>=9.0.1); extra == "dev"
Requires-Dist: watchdog (<0.11,>=0.8.3); extra == "dev"
Requires-Dist: docutils (<0.18,>=0.12); extra == "dev"
Requires-Dist: m2r2 (<0.3,>=0.2.5); extra == "dev"
Requires-Dist: nbsphinx (<0.7,>=0.5.0); extra == "dev"
Requires-Dist: Sphinx (<3.3,>=3); extra == "dev"
Requires-Dist: pydata-sphinx-theme (<0.5); extra == "dev"
Requires-Dist: markupsafe (<2.1.0); extra == "dev"
Requires-Dist: ipython (<9,>=6.5); extra == "dev"
Requires-Dist: Jinja2 (<3,>=2); extra == "dev"
Requires-Dist: flake8 (<4,>=3.7.7); extra == "dev"
Requires-Dist: isort (<5,>=4.3.4); extra == "dev"
Requires-Dist: autoflake (>=1.2); extra == "dev"
Requires-Dist: autopep8 (>=1.4.3); extra == "dev"
Requires-Dist: importlib-metadata (<5); extra == "dev"
Requires-Dist: twine (>=1.10.0); extra == "dev"
Requires-Dist: wheel (>=0.30.0); extra == "dev"
Requires-Dist: coverage (>=4.5.1); extra == "dev"
Requires-Dist: tox (>=2.9.1); extra == "dev"
Requires-Dist: invoke; extra == "dev"
Requires-Dist: pytest (>=3.4.2); extra == "dev"
Requires-Dist: pytest-cov (>=2.6.0); extra == "dev"
Requires-Dist: rundoc (<0.5,>=0.4.3); extra == "dev"
Requires-Dist: pytest (>=3.4.2); extra == "test"
Requires-Dist: pytest-cov (>=2.6.0); extra == "test"
Requires-Dist: rundoc (<0.5,>=0.4.3); extra == "test"
Provides-Extra: dev
Provides-Extra: test
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: AUTHORS.rst
[Description omitted; length: 5428 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.38.4)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
mlstars/__init__.py sha256=d9YuQ044yGCgzUcnvlzGooMemQIJVwQ-0eyMLC0dAjg 436
mlstars/utils.py sha256=od3b-6x2bvjUJ42YJQoPCnH5FqkFzcMugcUQ9l2XBX8 2941
mlstars/adapters/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlstars/adapters/keras.py sha256=lEYCBydE1SsdfAbiAt4Gz9959nhSHxgyrfnZ-x8fSiM 4105
mlstars/adapters/pandas.py sha256=wAAZQREq7PbhABYGd5kRazf56IlqFJUgixN59BqZHbk 3449
mlstars/adapters/statsmodels.py sha256=wBUK3U5Ad2nxLBN-kyu9v5wXpzYKHd6xT9ONG3pQXEE 2316
mlstars/custom/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mlstars/custom/timeseries_anomalies.py sha256=cxYLJSTrar7BC9NxCPKNH2et9ND6jT2udhy5sAMVYJM 16626
mlstars/custom/timeseries_preprocessing.py sha256=GrQPG2z4_PrkGLJhFQg1icCQxYN8kG2NOmD2SKfXKUw 8149
mlstars/primitives/keras.Sequential.DoubleLSTMTimeSeriesClassifier.json sha256=88rfuJW0-7y6NHBVyVdsuHFSdbFyqm1Spvx_r3VHR9U 5093
mlstars/primitives/keras.Sequential.LSTMTimeSeriesClassifier.json sha256=dQ1wWYLlCl2TlQOHt-b_-InqQPlIHmUxCVc12v2cqkY 4576
mlstars/primitives/keras.Sequential.LSTMTimeSeriesRegressor.json sha256=QMeaIKgOoTauMBOEm46iuXC2mm8lmtlulD8zowg7x2o 5264
mlstars/primitives/mlstars.custom.timeseries_anomalies.find_anomalies.json sha256=yr2hnkENvCPcpfD71BBmA4WWjF0RhABU9V4wXe5PAkA 1902
mlstars/primitives/mlstars.custom.timeseries_anomalies.regression_errors.json sha256=0YnPNe7_THu-aAJq1YEGwQwzDzUlU8mlZE0GkxIE1yU 1244
mlstars/primitives/mlstars.custom.timeseries_preprocessing.cutoff_window_sequences.json sha256=Gzpor03ymd-Ll5eVoaBMVwca_MYceoQXlzzVzI5-0WA 1173
mlstars/primitives/mlstars.custom.timeseries_preprocessing.intervals_to_mask.json sha256=qwEIj_uVFdB8WI1ocR7U6CNwMJxjUs1Nnt0pLhoietk 870
mlstars/primitives/mlstars.custom.timeseries_preprocessing.rolling_window_sequences.json sha256=vUNAQ2lvHEIC_3ZKeBvurkFLJmnMJOShCzVbkNZYXZ4 2027
mlstars/primitives/mlstars.custom.timeseries_preprocessing.time_segments_aggregate.json sha256=tk_1Xq6zT7YdDYCB5DDlViRFNH0MW9BVQ7iSfGdr8Z4 1524
mlstars/primitives/mlstars.custom.timeseries_preprocessing.time_segments_average.json sha256=_iLSrSgli_Q3UbLfbwC0cHmqrSh9RLFWsjD-zLsg0Kc 1099
mlstars/primitives/numpy.argmax.json sha256=fk5vJz-SbdBTHH7KzYX8r0aEDV3v8t3mlyZSIfX-yuc 847
mlstars/primitives/numpy.ravel.json sha256=z33p2CupUcwoqmmVV899THOmLVbteGhUikHm5SwXIMM 821
mlstars/primitives/numpy.reshape.json sha256=Q8SFBuwcPKI0o9EoS9uuRovm6lf1Ki-Zeb57QKT2rSU 1014
mlstars/primitives/pandas.DataFrame.append.json sha256=eMhtIWhrLAQB2TrI7vsu2MEsF2lPgbG3SxNZ7fF3ZGk 1607
mlstars/primitives/pandas.DataFrame.drop.json sha256=BNtfzjFG1N0U2TtX5KVZ-tCt9AIOFQBVaYmi-x9abaI 1621
mlstars/primitives/pandas.DataFrame.drop_duplicates.json sha256=Ot0rRtFo3KzbK3_l4MsfhAo3EdQ8CvOKNExkghm6dmk 1399
mlstars/primitives/pandas.DataFrame.dropna.json sha256=EzA_7ZLVZGuQVAX5vmmMjwXcFaR9f_jHImAbbWAZtTw 1579
mlstars/primitives/pandas.DataFrame.fillna.json sha256=51OPln4fyqu5Or_GB-l1vfDCTEYFrcli6Jd6BJZCBLE 1738
mlstars/primitives/pandas.DataFrame.filter.json sha256=0qh3MbfC7AqChMsNocYrCMvXOdjB6K8Uz9sySrlCC3s 1686
mlstars/primitives/pandas.DataFrame.get.json sha256=1nM7LbRz1opdW0Qj-dI_f-Vy_p8m25BrESKvi82oaYk 998
mlstars/primitives/pandas.DataFrame.join.json sha256=xLzDsuSpQuSmN-FAffwK1q52YMN-T_jZFvbCbbpywKQ 1948
mlstars/primitives/pandas.DataFrame.json sha256=OhJkQcFoO6ujOZaWo_78Z6683Gd35-62371sFUq8hsc 1521
mlstars/primitives/pandas.DataFrame.pop.json sha256=R5-FTVRpcNAd-NZf51QQ6Zs3gtz5cx5p-MF_oCE80wM 947
mlstars/primitives/pandas.DataFrame.resample.json sha256=F2BhQTl1jQnZoQRDx1C9anaqJvl8WKZFhNZaI6ErCME 2273
mlstars/primitives/pandas.DataFrame.select_dtypes.json sha256=Qlv4Eg6CzR4ifbrK-qS_dkHIC3D56mpVM1SLDLG41VY 1346
mlstars/primitives/pandas.DataFrame.set.json sha256=axIjwcKKjP3tMUmsuyoPqxUoqkfHTHaV0hoeQjsgrAA 1047
mlstars/primitives/pandas.DataFrame.set_index.json sha256=iBpU2bvRE2fKrW_ciD8X-hGzX5bOLMy44TncIdzN-Hs 1817
mlstars/primitives/pandas.DataFrame.to_numpy.json sha256=-WVxTZy-J6PuAxgbhb8LZB0N4E1YSzTgrry1ZqovrzA 1346
mlstars/primitives/pandas.DataFrame.unstack.json sha256=u5x1y1lrbIPLk80J9Ec5pjPpU9lTrnLBXawAkk-Fmk4 1243
mlstars/primitives/pandas.Series.filter.json sha256=ivdmqVwXbbluwMlyUXddQLy6DxtZt9k369DMGezUFKY 1224
mlstars/primitives/sklearn.decomposition.PCA.json sha256=KQ1rxmtoASJu6CEo2xyGCpwnlQpcPIecm2Og-gpOVJo 2238
mlstars/primitives/sklearn.ensemble.AdaBoostClassifier.json sha256=vr7veJ2ZOcyWfOls2WLFOLD02msTTdEF1ukwHvPgAIs 1890
mlstars/primitives/sklearn.ensemble.AdaBoostRegressor.json sha256=5pcvb7FTy6ZT0t4A7xWeIbeByzcGkQm7ubSLlhPokxI 1914
mlstars/primitives/sklearn.ensemble.GradientBoostingClassifier.json sha256=r9LgJ_ZlQArLBpOTxIysVGtUXbvZGwkGJ5GVV3YIvow 4782
mlstars/primitives/sklearn.ensemble.GradientBoostingRegressor.json sha256=yanpeXMw4ZXbfsbdwPBRnJ6yNzH3Wp8mctMMFh5PL8E 5015
mlstars/primitives/sklearn.ensemble.IsolationForest.json sha256=cNItq2xOuGNco9SbEE4tpEF6pXp561P6FJF15xjUi5c 2565
mlstars/primitives/sklearn.ensemble.RandomForestClassifier.json sha256=z9_NVj1rRgu8X6PvL3p51_R7wd2kJvC3eoBjGhjI2i4 3721
mlstars/primitives/sklearn.ensemble.RandomForestRegressor.json sha256=xsFfSng-VBOnsHPlaMyWRBqbcKBqLffDOv25DaYnOWY 3909
mlstars/primitives/sklearn.impute.SimpleImputer.json sha256=jUzFetRugXCcm1hhnlvL7_2HUOD7Kd5ngMNMfSIY5G8 1765
mlstars/primitives/sklearn.linear_model.Lasso.json sha256=YeLSXt9AHjPV-rY2f7IE61Znsb4FX72KWbSx9YtY7eA 5411
mlstars/primitives/sklearn.linear_model.LinearRegression.json sha256=7C-ImicD5Z4UnBnGWGw1rnJ4UzVI2QvKiq26AGtVMaY 2378
mlstars/primitives/sklearn.linear_model.LogisticRegression.json sha256=sIyAazqcavFO_goXspC6c0ZjS3SEDPioEUJwT49eQUM 7498
mlstars/primitives/sklearn.linear_model.Ridge.json sha256=fcavrFfQKrbr14O_FRQy95jwYQny957fV4wrk-o8_jg 4365
mlstars/primitives/sklearn.neighbors.KNeighborsClassifier.json sha256=eRT7MebpspnpSLb6OqS5JtcTbc5W7hxMHFI2W0WnJrc 2459
mlstars/primitives/sklearn.neighbors.KNeighborsRegressor.json sha256=aMTqpgNs32vZnnZEBkLlSlWrzsTdwkZXd27VB7pTUoc 2401
mlstars/primitives/sklearn.preprocessing.MinMaxScaler.json sha256=RABLHv9rdazga8iVF8_qIjm3FhzSL91rjY6xZDYzfqU 1663
mlstars/primitives/sklearn.preprocessing.OneHotEncoder.json sha256=EGQ7X1jQTX04nUaq72p9_kr01-MJpwOdmh29ExTQ2g4 1321
mlstars/primitives/sklearn.preprocessing.StandardScaler.json sha256=5xKhsTXDTX5GDLryO3Ipt7aim71Ysq0F00-TaOuTPf0 1262
mlstars/primitives/statsmodels.tsa.arima.model.ARIMA.json sha256=3b5Nr6n5VmzzXzzGOnna3hwsf3R6qRDJPXehiRiN3lA 1511
mlstars/primitives/statsmodels.tsa.arima_model.Arima.json sha256=f8UUm_X3Tyjzmq8_Ip9EGU0nKc0dsPpQp0c__7M0Hxc 1611
mlstars/primitives/xgboost.XGBClassifier.json sha256=sS6NarbbawVR6Kr2t3Nwr6mJGCqXaWQUUjOtAKUPEdc 2226
mlstars/primitives/xgboost.XGBRegressor.json sha256=t4LjjvK6Wg_2TAq_qiF8tP3yHY-MwBBqPtKAOqoh_AE 2220
ml_stars-0.2.0.dist-info/AUTHORS.rst sha256=SpU_INrWgjOa6L8De9y5A3gi1bok-nK2ZuNjYYH5WOw 108
ml_stars-0.2.0.dist-info/LICENSE sha256=mTqROxpK_UmYMikCBmO3FIcq51qHYcWQ50Qb7iNWslM 1070
ml_stars-0.2.0.dist-info/METADATA sha256=9HHwQRhMtjrUbmxHFpiBMnt12L7hVJvsXv_lGo1i6yE 8040
ml_stars-0.2.0.dist-info/WHEEL sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo 110
ml_stars-0.2.0.dist-info/entry_points.txt sha256=O8x3CNlzWpXW_mlj7oL2qIUgX1uSYtakpBKygU4Vw4s 91
ml_stars-0.2.0.dist-info/top_level.txt sha256=KMJl8K2So40Kw9xwXUde3FQ82kH19X-WnEJvfO2slBM 8
ml_stars-0.2.0.dist-info/RECORD

top_level.txt

mlstars

entry_points.txt

pipelines = mlstars:MLBLOCKS_PIPELINES
primitives = mlstars:MLBLOCKS_PRIMITIVES