ml-ops

View on PyPIReverse Dependencies (1)

1.2.1 ml_ops-1.2.1-py3-none-any.whl
ml_ops-1.2.1-py2-none-any.whl

Wheel Details

Project: ml-ops
Version: 1.2.1
Filename: ml_ops-1.2.1-py2-none-any.whl
Download: [link]
Size: 150039
MD5: f86907c3bae3c48454da83ce6f5b1713
SHA256: c26fffd471bb6726116fd09a41eee9b05e805d5d58f449767fcf7b832cd25f71
Uploaded: 2019-06-21 09:12:56 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: ml-ops
Version: 1.2.1
Summary: A library to read and report MLApp statistics
Author: ParallelM
Author-Email: info[at]parallelm.com
Home-Page: https://mlpiper.github.io/mlpiper/mlops/
License: Apache License 2.0
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: MacOS
Classifier: Operating System :: POSIX
Classifier: Operating System :: Unix
Requires-Python: >=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*
Requires-Dist: wheel
Requires-Dist: pandas
Requires-Dist: termcolor
Requires-Dist: kazoo
Requires-Dist: protobuf
Requires-Dist: requests
Requires-Dist: py4j
Requires-Dist: scikit-learn
Requires-Dist: numpy
Requires-Dist: future
Description-Content-Type: text/markdown
[Description omitted; length: 383 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.33.1)
Root-Is-Purelib: true
Tag: py2-none-any

RECORD

Path Digest Size
parallelm/__init__.py sha256=_mHZTPcU2SB8ZpCWU9JWk2whLhtrqP2CHcUoIToadJs 121
parallelm/mlops/__init__.py sha256=jg2VKvj5Hm03cw1hrEOxjc-ZRtnLbYqw3bL-MpinGW4 407
parallelm/mlops/base_obj.py sha256=BBE_wOD5iDirDwRmgdrpaHstHkIMR4O_soNtQaQwpjQ 556
parallelm/mlops/config_info.py sha256=SKxnHaXAcTFGhHaaoHLbk0LHVysu4Me2YKBV1PKlBqQ 3450
parallelm/mlops/constants.py sha256=yNihcqGVi9pYNyUYK8SMM6wAmuFvU2RdcXd8A0o0GHg 2666
parallelm/mlops/data_frame.py sha256=C5QtwtojxtbxMm_KP7lr7bZBDXri3Z96tSM8rfjVtKU 10150
parallelm/mlops/data_to_json.py sha256=xRFXk-S7h2w6lBDWFQ36EI2sS39g0wJPAudMp2DvPhQ 1455
parallelm/mlops/logger_factory.py sha256=KRkIkbLCcRsYmOrUO4GRVt_p1QnO40d9QakI6il7JHY 599
parallelm/mlops/metrics_constants.py sha256=Ylc3OliQXSRCWpqFPhlVCgurYqlQ3ParyR8FenQ7J-4 4463
parallelm/mlops/mlhealth.py sha256=1KPmOoWWcBt3TWcfc1pyJcTG5169JGhT46i9lUDp3gU 9858
parallelm/mlops/mlops.py sha256=d3coezqddlOLZ3lqLYuXWkejvrwPmvrFiqE9jjA0JYs 44996
parallelm/mlops/mlops_ctx.py sha256=HPDK38x6cVBExMryGKu_eL95BAcZZHEm3Xa0Q4bdKec 13007
parallelm/mlops/mlops_env_constants.py sha256=U2qeNjUjisVbBbFJXSTSFTLQdBKg0S7UpbkQCz7aosE 1664
parallelm/mlops/mlops_exception.py sha256=A0EeRxsAOWooH1kPwl44sYhWO-g8iiUIma0ThIhHobs 2854
parallelm/mlops/mlops_metrics.py sha256=HgGAA4w70vB2wHefpaSN5vIw6bdhBaCqH12jCaUnLq4 53573
parallelm/mlops/mlops_mode.py sha256=_hGGvuj3igs4OdeI_e3pdp6JGgsc6WrRgcNEaaOkRZk 1948
parallelm/mlops/mlops_rest_connected.py sha256=kEZnwW4XG4TYkhgobrRrdXq-W5Iq5FajYx1DZTn-PqI 15955
parallelm/mlops/mlops_rest_factory.py sha256=9QWtqgaOyQjd6U9Wt4k2kv0cSydc_O9DSsz1e73w6lg 775
parallelm/mlops/mlops_rest_interfaces.py sha256=P6N3GIo3ZBIAOEL-t8O6J63zqRuAQULUpBXEN_rMoGs 3926
parallelm/mlops/mlops_rest_standalone.py sha256=ejX3kOBymx9SeXdJF00j2bFGts993PXMMx8vovsv1Ks 3689
parallelm/mlops/packer.py sha256=hR283BO5PqfvdQshI-YGYhSG__wTV_w53SuJOA5MMuQ 2096
parallelm/mlops/predefined_stats.py sha256=goTt0sMcA5VPwHN5Y2oqSGfn1eJ1VUPiBuSvdap6VtQ 290
parallelm/mlops/singelton.py sha256=dAjaau_uM4KCMXkXb2g6Yl6vRsIz7yKR8NCzqdio3s4 524
parallelm/mlops/stats_category.py sha256=zY_XeY_h6_WRGL1PyJiZOyjkbDXS0bBPltfItjDD50Y 2116
parallelm/mlops/utils.py sha256=rfRzTBdxyRaBpypX-9FMry15XCSjJNfxnCt4Z0eFW8M 1021
parallelm/mlops/versions.py sha256=h5t0JoUQ54FlIWLwySSYAyL4E9NfB9adG7T00HB_VO8 235
parallelm/mlops/versions_info.py sha256=WHkBBqrXdy1TySLEzdjHS5m9NynkQ2vbHjJdX7sTAiQ 3975
parallelm/mlops/channels/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/channels/file_channel.py sha256=4rPXfrffn_nD8cQloT4MVpUEbJGSwaRxNYHMkxj7zYg 3962
parallelm/mlops/channels/mlops_channel.py sha256=NTEWaRir3wW64kWSCJt718WMQAjBSv__d2tJybFTyJY 2197
parallelm/mlops/channels/mlops_pyspark_channel.py sha256=mva1tGMJz-ckBIJn_yv8AVUeLYNWY689680xfPN2XfQ 8625
parallelm/mlops/channels/mlops_python_channel.py sha256=J_f578_s0mA5yJxXwJ6o20_hLsX5zObUZtHKUND9gyg 5387
parallelm/mlops/channels/python_accumulator_channel.py sha256=c6ko6-pMCdHZVf73ngY8YUkBmVfIQp_PC3wkFh_A4nk 1055
parallelm/mlops/channels/python_channel_health.py sha256=Zoav_-gviVC-zWxYJUmxDiVDn0mZbvgryKugDold4Dw 20321
parallelm/mlops/common/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/common/spark_pipeline_model_helper.py sha256=YcwqbHt91oGWH4lHKLdAAkAApq-CHYg5MyqNcABMS6w 9565
parallelm/mlops/common/string_ops.py sha256=w2rT09DvFcp0cA8SzGnWuZDFZy-urgHe9a7ZkWVdkas 682
parallelm/mlops/data_analysis/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/data_analysis/categorical_data_analyst.py sha256=zTOETYz2MFeYCs2J7RjvB21J6ZZ7fAP9CrPIZaZZpnE 5518
parallelm/mlops/data_analysis/continuous_data_analyst.py sha256=p04lqb0XeY9lQhCd72ts71B7DQlQ9IVTVViQWhcOfSs 5653
parallelm/mlops/e2e_tests/__init__.py sha256=98YE5Rii4djJuQRRmO1GLaVmkID0OCkQ7n1K5AisI4k 75
parallelm/mlops/e2e_tests/e2e_constants.py sha256=lAdoim-MIGQAGxR35eQDryOxegxCmbcfFB9tt8DZPG0 329
parallelm/mlops/e2e_tests/predict_node.py sha256=5jKqAXzwTCXEvaAyYoBH3CHqrgmS018JWHdApH6F0vE 1026
parallelm/mlops/e2e_tests/train_node.py sha256=t109gxko-4TiJ66XnUjYFXHiIbirZsjQ-8e5dxmKW5Y 3561
parallelm/mlops/e2e_tests/health_node/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/e2e_tests/health_node/runner.py sha256=vV9VBuk5qhsNzlaXeJBIMmTbZYoxrxfs_eeNy__6n1c 4715
parallelm/mlops/e2e_tests/health_node/test_events.py sha256=R4gjklXxKzDhEt6CXFuKskjaJ2v0d_-awDOa59NNA6A 4302
parallelm/mlops/e2e_tests/health_node/test_ion_structure.py sha256=80wBf3jBvQiChpJZchUuSFYUyHL7ITXm-l4qnaCn__8 1090
parallelm/mlops/e2e_tests/health_node/test_models.py sha256=mQo2hrucUMsb7eP_NymBDRgMVJP-LiQ0F8zDppGGllk 3138
parallelm/mlops/e2e_tests/health_node/test_stats.py sha256=6YnGUDg1vRHf_qvduEIzFZJ6dNMJzN-RZ7VRmNzQMvg 7627
parallelm/mlops/events/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/events/canary_alert.py sha256=0Wc8V2iToPSzlymH2Pb7qLjFSw40GcQBFeD8FPoxXTA 1422
parallelm/mlops/events/data_alert.py sha256=LIg_Agw3avLusEdNUMPDD1HTPpMN4odoNrgLIRA8TnE 378
parallelm/mlops/events/event.py sha256=VrTxvBBUtKhgz3Lms4WMC8nlSBGD1F1Ei1CQuTzBoG4 1458
parallelm/mlops/events/event_broker.py sha256=osRUFz7hv8FdX2B7wA3lSB4e32DRwxMXelPURvPn1r4 4532
parallelm/mlops/events/event_filter.py sha256=tTlVcgNUOFnNcxXr4JSUx8N2f1w6KObesqLeJqyj2No 1159
parallelm/mlops/events/event_type.py sha256=xeBeWHXMZvyR0f_LlyDLPQezv1OrIZDIOo00H7ihHMo 524
parallelm/mlops/events/health_alert.py sha256=bAcGwAiILq6L60ahpgrtnFQweu-KH8uVUrWvVmqhzCk 387
parallelm/mlops/events/system_alert.py sha256=IR2Fx4EsB5XsPBzrSt2_zZgAXEbxUYR29h-HpCJLAos 386
parallelm/mlops/examples/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/examples/ab_testing_base.py sha256=A7R7MPjsraA8FkHDyzwwbO0B9fmGZiITi2k1bgAAP4Y 12220
parallelm/mlops/examples/canary_comparator_base.py sha256=-XF_IWGxU-ayq9-_NvnCvM2pt6qlWEmTVOVruTetWVw 9496
parallelm/mlops/examples/utils.py sha256=J8j77zIroWnA82awaRhYVHMJeSTTNxBOMyEhsyLpuvU 901
parallelm/mlops/ion/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/ion/ion.py sha256=y998JcefaYr1w9U8m5HYk18a2MYnAvFSy1KLj7A7NNs 3723
parallelm/mlops/ion/ion_builder.py sha256=FaBNDO5CrsaPX6So7ulcdtJI3nF8zgWwCc7IFAq6kh0 4457
parallelm/mlops/ml_metrics_stat/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/ml_metrics_stat/ml_stat_object_creator.py sha256=6UIPUZZYxee6p6Z_eigXKa_HjFyF-XFjzLCZJxNOk5U 5437
parallelm/mlops/ml_metrics_stat/classification/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/ml_metrics_stat/classification/classification_stat_object_factory.py sha256=ulQqj590ftKxRy93MYA-C52YZK3NNELxRk_NyivQnx8 25371
parallelm/mlops/ml_metrics_stat/clustering/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/ml_metrics_stat/clustering/clustering_stat_object_factory.py sha256=rZzLgTFtJp0n6UeMF0lzmPf6qJSLra4kMShdOjQc08s 12996
parallelm/mlops/ml_metrics_stat/regression/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/ml_metrics_stat/regression/regression_stat_object_factory.py sha256=84XxBc3Lzs5M4tjbPMQKFT4yG3DDs3-1GwWm8TqYW38 7505
parallelm/mlops/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/models/json_fields.py sha256=_UNHYYvJOzH5aM-1rsZrqmh2BGdcPYVVN1yg5RWMyEo 398
parallelm/mlops/models/mlobject.py sha256=eOX6ehGfYzPboT6hOh6RstsO_SHAPxNoz2KcPglyUEo 774
parallelm/mlops/models/model.py sha256=gDB-nLk2NHzu1qfjNSZpFlrhddniySNIUGf7S_dodkk 10578
parallelm/mlops/models/model_filter.py sha256=K6tgWPwm9-5wIfujvzcRZauL3whTm1Meq5frUGMeP68 330
parallelm/mlops/models/model_helper.py sha256=ZXKm4djLVlYzTBJTaHxTAw5G8j5M2PpMVy1_j_t8gP0 9453
parallelm/mlops/stats/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/stats/bar_graph.py sha256=Q9QqW3eBaeV1siuod6zrZzvDHhm1IU0S6B3tl5ewHYE 3983
parallelm/mlops/stats/graph.py sha256=6U0-PTDkgnvjVkoVn-e6Zs4rjLbYs_tl_k2X35cogbw 11743
parallelm/mlops/stats/heatmap_stat.py sha256=68xaWUVi9EzPmPfimMKxbOS4eTgLD4w6DXiYXSXGibU 2825
parallelm/mlops/stats/histogram_overlap_score_stat.py sha256=90I0LG3HSVOlsdkerVzh2DSLXReOv6USOR9b5iMvrDA 3018
parallelm/mlops/stats/histogram_stat.py sha256=fLcfRi5UaxwKGv9DvPLVFfXvCD5zB5xtmeG-pSK97fA 2480
parallelm/mlops/stats/html.py sha256=P2Q_AevUjaImMYauVulW6kdIc75pEADKKZGztHLku6g 1462
parallelm/mlops/stats/kpi_value.py sha256=HeoVnw_mMXWq19ZgIL_5wqWj89vWVDVOjRuIw73LN1E 2204
parallelm/mlops/stats/mlops_stat.py sha256=xpI-Xkn5DCRtMqWcErdxVwicSi8hZvpZXEhHq0KYDU8 2634
parallelm/mlops/stats/mlops_stat_getter.py sha256=iJ00j6nECH0pC38O0CzDSXmrVKXzdg6tqV76-k5mn90 342
parallelm/mlops/stats/multi_line_graph.py sha256=OCcFvY9x7QqEhBnNBarEV5CTlwc6J2aEC6-1P2kysr4 3685
parallelm/mlops/stats/opaque.py sha256=fog2m670sf16K-W4cwbGHz_rtbFmLRH5b9OkHGpJ1zA 2066
parallelm/mlops/stats/single_value.py sha256=c2kX01Tkiw0C2McmImXMim8q31wZ1qDWYsIrTit6KMY 1728
parallelm/mlops/stats/stat_utils.py sha256=x4rpck25VkQ3hVJwiaY3ZYOwtQbALBybbbvhyLBq4Mo 2703
parallelm/mlops/stats/stats_helper.py sha256=eFDvcAvmK521jht3BUQw95O5dwNeyeF37P38EgnXnIM 12501
parallelm/mlops/stats/stats_utils.py sha256=xi6jNI-4fsCJh4vRvj4075hAUhT1TkryaLpPr8Ir_2I 3012
parallelm/mlops/stats/table.py sha256=an_Bm12o-IHAs5xflJBNB3carC8ZMKNE0SZAf6rAuGQ 9702
parallelm/mlops/stats/value_formatter.py sha256=jF9RoQuL251JJFiMT-0Xg4WOAPyvGls_WEbzuS63f9w 735
parallelm/mlops/stats/health/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/stats/health/categorical_hist_stat.py sha256=nVZmCVh0FuXu4YQljKVuVCvNaT0oKfm-vq4rb9_UDFU 3798
parallelm/mlops/stats/health/continuous_hist_stat.py sha256=YXs2amG71uJCULXtC0Daoei45ckW2Fulo_z_a-aJapQ 6751
parallelm/mlops/stats/health/general_hist_stat.py sha256=vB969sJKQuJBV4Tl8LQoxt-QC7DfN_VJ6F8vcQVjAfo 15060
parallelm/mlops/stats/health/histogram_data_objects.py sha256=zDUOkietKiUwHo_aiK8b26lrKJW6dtUWRQ5VHB4I8wo 2279
parallelm/mlops/time_capture/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
parallelm/mlops/time_capture/json_to_df.py sha256=TNQSacZ7iHDMk-36X7XvDGc2i_tk5q8X6WikYOSjDak 3063
parallelm/mlops/time_capture/parsers.py sha256=F2iffM1thND1Wc8EqnSbngn0Pl_D_iRYOu6Ono2LB-E 10446
parallelm/mlops/time_capture/plot_functions.py sha256=l3sjIYilql6iBWc6Nf339frp59Pt_pGsUgMyQTYj5_U 13696
parallelm/mlops/time_capture/time_capture.py sha256=4FBqmeDdXqxJxWdP6Gc8P_uTCCce0x5Wizji9i8AlzI 13165
parallelm/mlops/time_capture/time_functions.py sha256=7w5Y1jVJ3yDGsdQ_6wtXXWZPrR6GIhBiW2a5Fjda8fQ 1735
parallelm/mlops/time_capture/untar_timeline_capture.py sha256=SAISetW_cHasKWgfzJIV408I2kKCJRyoDHd065SsQSo 1900
parallelm/protobuf/InfoType_pb2.py sha256=UaAEcBakitOh3LCyaD4hxA1JFNUlszJUuBXxj4JiTB4 2084
parallelm/protobuf/ReflexEvent_pb2.py sha256=vi74vV5TV3_wFOE5Zy8VWlSqB-cBq62MWMzLhBJ82As 6117
parallelm/protobuf/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ml_ops-1.2.1.dist-info/METADATA sha256=8Hmu9nGr92WmA87_6IEa-N0aQM9XkCvomI4Ap1cDflc 1237
ml_ops-1.2.1.dist-info/WHEEL sha256=pqI-DBMA-Z6OTNov1nVxs7mwm6Yj2kHZGNp_6krVn1E 92
ml_ops-1.2.1.dist-info/top_level.txt sha256=2tHCvDHnwsYSIOXlZymo9DdJOSFv4bRKZcMUVbGzjGs 10
ml_ops-1.2.1.dist-info/RECORD

top_level.txt

parallelm