mim-nlp

View on PyPIReverse Dependencies (0)

0.2.1 mim_nlp-0.2.1-py3-none-any.whl

Wheel Details

Project: mim-nlp
Version: 0.2.1
Filename: mim_nlp-0.2.1-py3-none-any.whl
Download: [link]
Size: 32346
MD5: df07d5b256868e01321fa54e419a7eb6
SHA256: 47842a0209aa78abf6a94a436a2f1dbfcaf17fbe5faebf1edac42c44cb2982e8
Uploaded: 2024-07-25 11:58:56 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: mim-nlp
Version: 0.2.1
Summary: A Python package with ready-to-use models for various NLP tasks and text preprocessing utilities. The implementation allows fine-tuning.
Author: Michał Brzozowski
Home-Page: https://github.com/mim-solutions/mim_nlp
Project-Url: Bug Tracker, https://github.com/mim-solutions/mim_nlp/issues
Project-Url: Repository, https://github.com/mim-solutions/mim_nlp
License: MIT
Keywords: nlp,natural-language-processing,machine-learning,deep-learning,neural-network,transfer-learning,text-classification,text-regression,seq2seq,summarization,text,text-preprocessing,text-cleaning,lemmatization,deduplication,transformers,pytorch
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Requires-Python: >=3.9,<4.0
Requires-Dist: accelerate (<0.21.0,>=0.20.1); extra == "regressor" or extra == "seq2seq"
Requires-Dist: advertools (<0.14.0,>=0.13.2); extra == "preprocessing"
Requires-Dist: gensim (<5.0.0,>=4.3.1); extra == "preprocessing"
Requires-Dist: loguru (<0.8.0,>=0.7.0); extra == "seq2seq"
Requires-Dist: matplotlib (<4.0.0,>=3.7.1); extra == "svm" or extra == "classifier"
Requires-Dist: more-itertools (<10.0.0,>=9.1.0); extra == "seq2seq"
Requires-Dist: morfeusz2 (<2.0.0,>=1.99.7); extra == "preprocessing"
Requires-Dist: numpy (<2.0.0,>=1.24.1)
Requires-Dist: pytorch-lightning (>=1.5); extra == "classifier" or extra == "regressor"
Requires-Dist: scikit-learn (<2.0.0,>=1.2.2); extra == "svm" or extra == "classifier" or extra == "regressor" or extra == "seq2seq"
Requires-Dist: scipy (<2.0.0,>=1.10.1); extra == "preprocessing"
Requires-Dist: torch (>=1.7.1); extra == "classifier" or extra == "regressor" or extra == "seq2seq"
Requires-Dist: torchmetrics (<2.0.0,>=1.0.0); extra == "classifier" or extra == "regressor"
Requires-Dist: tqdm (<5.0.0,>=4.65.0); extra == "seq2seq"
Requires-Dist: transformers (<5.0.0,>=4.29.2); extra == "classifier" or extra == "regressor" or extra == "seq2seq"
Provides-Extra: classifier
Provides-Extra: preprocessing
Provides-Extra: regressor
Provides-Extra: seq2seq
Provides-Extra: svm
Description-Content-Type: text/markdown
[Description omitted; length: 3752 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.6.1
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
mim_nlp/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
mim_nlp/classifier/nn/__init__.py sha256=YzJ5EoUpOaNmD0r27ey0d-PoGn7IgouFyVe5HJkjh4E 40
mim_nlp/classifier/nn/nn_classifier.py sha256=OVLJ3U5ucj5EYGzVm7jUnYz0BZmpEzLx6tWZ7vwS-DU 6895
mim_nlp/classifier/svm/__init__.py sha256=vcbmxKQgqFEfHEmyr7rCkzswwZCYyAAS4SxLnsPaIWo 66
mim_nlp/classifier/svm/svm.py sha256=UXFh138htCVyzwewvFFFZbHopOFGPuHjUuVcVW3gwls 8478
mim_nlp/classifier/svm/svm_explainer.py sha256=0r2hXW6tdvGTL64tRIUUlE9RM3EZr4cN8JSTJh6tluE 2764
mim_nlp/classifier/svm/svm_reduction.py sha256=w0wuUP2yVTv5rxQTvLojz6IiJFX7xMqR6j4ozN4WaPw 1235
mim_nlp/general_utils.py sha256=7D1SiKCRWv9Dw5HyQfHf3ufq7neqi3OQTnzhG6Ml8_w 583
mim_nlp/models/__init__.py sha256=MPEqnQ0JpvBwmHiApOj7PRlXyTZZjUshCNdx_ugMCK8 157
mim_nlp/models/classifier.py sha256=st3JtG5N3op56y9ic1v05dTjNyyvaWOtj3JbLSrV0fU 543
mim_nlp/models/model.py sha256=eCHLsWFx7tzoTVq00fAGFNzOBSxKSv8rhfhAIBLEu4I 604
mim_nlp/models/regressor.py sha256=mvr_mrxV7tg6YPv66tm48AUelwwnKyiAPcT_6DsYrt0 440
mim_nlp/models/seq2seq.py sha256=aqQPWp_a_WvkmZ19tV1YZOyAS6rO4E_5l2GTirBopWI 413
mim_nlp/models/summarizer.py sha256=Gvazj5WZ23K0c3utnm-WPdUQFvNS3nR75S5ZosF_6Yg 107
mim_nlp/neural_network/__init__.py sha256=slxlzuRG3T5wXivcEY2GZ-Ut8JYh5H-MKvj9Y0BXZpw 67
mim_nlp/neural_network/nn_model.py sha256=Lqh8m6C0g0nauPqDpnEkG4i1PmT4oVg5VIwpYyIpe9I 14840
mim_nlp/neural_network/nn_module.py sha256=d378d20Cax7rtiG2o6w51Z9OziGAsqq1Vw43oeGW3EI 5969
mim_nlp/preprocessing/__init__.py sha256=zjnKmbtkPZI-GAvy8zdkMuzZyfKqC0DKBBjloGCQeYs 349
mim_nlp/preprocessing/cleaning_functions.py sha256=oMIfnLMwQfcCOQGnRWHmuo5L2tV1j0sltjdxiyzo1LM 5654
mim_nlp/preprocessing/duplicates.py sha256=ZkSprg6qoMX5AYjlL9xBS_V5Lv815TmMsZei8mYAX_A 8687
mim_nlp/preprocessing/exceptions.py sha256=gnkIOy8pq7jfCXX7hzVGGj_7dBOxRQRL2tk9zMyyiHU 514
mim_nlp/preprocessing/lemmatize.py sha256=8luKoHIaH9vp67xYaL3TcytTMdS3ghYL5gVDt-7bi-c 486
mim_nlp/preprocessing/text_cleaner.py sha256=L2gaqNIF119froaxhAbkpBjQD2ZCLUMFwBDXvHQVO7g 1365
mim_nlp/preprocessing/utils.py sha256=VJ86snYR3c8QZUWP7GatSNnhZ3UM225HqsNBEV5ZpSQ 1468
mim_nlp/regressor/__init__.py sha256=2NfeurqJcwCpvqdjEvp5huaARgOrM8DIGztijWGZ1TU 80
mim_nlp/regressor/auto_regressor.py sha256=0wBuayjndqa-WK1Pvg7sXpKkLEYlmJ7wIvyjqzN4ZQ4 6873
mim_nlp/regressor/nn_regressor.py sha256=jqapkOYIzkHE3ZXPv8l2NWtP3FJJZilHHVUFVNTpoLs 5051
mim_nlp/seq2seq/__init__.py sha256=eCSqo0qVB-vM04w40VzruuPK3wz8IdYRoQLyQ85SuPM 117
mim_nlp/seq2seq/auto_summarizer.py sha256=2UOZKvqDyjpJbih1xOiIyP5XDQUihW9HhkItc_rV0C8 4891
mim_nlp/seq2seq/data.py sha256=lA1R--vROsqwGHM3dFztSnct14V3R5kh7n49qBsgz3Y 3100
mim_nlp-0.2.1.dist-info/LICENSE sha256=X_WNW29auUh9RjpyBfWqt9_ruh79RapOGLd31IenjLM 1081
mim_nlp-0.2.1.dist-info/METADATA sha256=1bNVPU0yDOglIBGFIpISHMwUrnwr9pjCr4fO3EPzhMI 6138
mim_nlp-0.2.1.dist-info/WHEEL sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk 88
mim_nlp-0.2.1.dist-info/RECORD