metats

View on PyPIReverse Dependencies (0)

0.2.1 metats-0.2.1-py3-none-any.whl

Wheel Details

Project: metats
Version: 0.2.1
Filename: metats-0.2.1-py3-none-any.whl
Download: [link]
Size: 16653
MD5: cd87eb75b3858794e834e98dcaa29543
SHA256: db2124dcc6034a3d682469b4106750de926ae1066025dbef3576394cfd0915ce
Uploaded: 2023-03-30 09:33:45 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: metats
Version: 0.2.1
Summary: Meta-Learning for Time Series Forecasting
Author-Email: Sasan Barak <s.barak[at]soton.ac.uk>, Amirabbas Asadi <amir137825[at]gmail.com>, Mohammad Joshaghani <mjoshaghani10[at]gmail.com>
Project-Url: Homepage, https://drsasanbarak.github.io/metats/
License: MIT License Copyright (c) 2021 Amirabbas Asadi Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Keywords: timeseries,metalearning,forecasting,unsupervised learning,deeplearning,machine learning
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Requires-Dist: torch (>=1.12.1)
Requires-Dist: umap-learn (>=0.5.3)
Requires-Dist: darts (>=0.20.0)
Requires-Dist: lightgbm (>=3.2.1)
Requires-Dist: matplotlib (>=3.4.2)
Requires-Dist: numba (>=0.55.1)
Requires-Dist: numpy (==1.23.5)
Requires-Dist: pandas (>=1.2.4)
Requires-Dist: pbr (>=5.11.1)
Requires-Dist: pdoc (>=12.0.2)
Requires-Dist: scikit-learn (>=1.0.2)
Requires-Dist: scipy (>=1.6.3)
Requires-Dist: seaborn (>=0.11.1)
Requires-Dist: shap (>=0.40.0)
Requires-Dist: sktime (>=0.10.0)
Requires-Dist: tqdm (>=4.60.0)
Requires-Dist: tsfresh (==0.19.0)
Requires-Dist: statsforecast (>=1.5.0)
Requires-Dist: pytest; extra == "dev"
Requires-Dist: pdoc; extra == "dev"
Provides-Extra: dev
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 5363 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.40.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
metats/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
metats/datasets.py sha256=3F-_vKADIv0Zto3NJYHE05FoWr8jSGQwk1BQWb2hPgc 5003
metats/generators.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
metats/pipeline.py sha256=VTyx5TvPexO_gr31d8cgNWltes3vkKbaeNfJKbRD80g 10895
metats/features/__init__.py sha256=0K5qm2uM231Ipd86I01BWY6mxTD0jcPLJOSqGARuXdY 777
metats/features/deep.py sha256=bAUqDrf46wAyHMGKmhYwtthqsfpxOnyRpjPhz3cNPgY 14041
metats/features/statistical.py sha256=9BfvsOLGiZJgo-KYOk0LDE-puBv8kQqfi6GaBIY--EI 1414
metats/features/unsupervised.py sha256=T21w19vu8IfpFQWMFrz3h5xrDfjgHr0gyxUzuX-HyNQ 1848
metats/forecasters/__init__.py sha256=6vjERUaRFnEe2obNr-fmT2J2eY1tHIOzgqtgaWPd_xA 84
metats/forecasters/statistical.py sha256=fSpfjapCtB13NQSFllYpUhQ9fLEGrw_FkvJepaWQbSM 643
metats/forecasters/utils.py sha256=PBeH5xOoYWJ2zzpD4Fpo7J51JOG4CgC1fJzsEc3SVyc 677
metats/forecasters/wrappers.py sha256=0ItAb4G76FVoZPJctFjlkayDb1AyG2k14j8y2KbOcFE 3914
metats/metalearners/deep.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
metats-0.2.1.dist-info/LICENSE sha256=SZWamp9A7Cg-lhn-sBfZlyeO5j0VGGSJjjlGzRX9ugU 1072
metats-0.2.1.dist-info/METADATA sha256=n0Db1YGlSw2jLZYpLVZVIHAz7cq6xxuZ5XiBFSrCZAE 7908
metats-0.2.1.dist-info/WHEEL sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 92
metats-0.2.1.dist-info/entry_points.txt sha256=C9CPa7JiG1D-Vk4J-lTe4NCVvhgYlX1ioyOJx-RDe4E 48
metats-0.2.1.dist-info/top_level.txt sha256=pwRaWRKVox_qCMonmKq-H0MT48_wPH7ZpTbQL8tM-A8 7
metats-0.2.1.dist-info/RECORD

top_level.txt

metats

entry_points.txt

metats = metats.__main__:main