MetaFEDOT

View on PyPIReverse Dependencies (0)

0.0.5 MetaFEDOT-0.0.5-py3-none-any.whl

Wheel Details

Project: MetaFEDOT
Version: 0.0.5
Filename: MetaFEDOT-0.0.5-py3-none-any.whl
Download: [link]
Size: 22057
MD5: bc7871f788036f2f8f48b40481c5a15e
SHA256: 17de3dc0b90c868dc54bc07f97c5eb7643e6f2c370f818fffb66d16c4cfd95d1
Uploaded: 2023-07-24 20:09:43 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: MetaFEDOT
Version: 0.0.5
Summary: Framework for meta-optimisation in AutoML tasks
Author: NSS Lab
Author-Email: itmo.nss.team[at]gmail.com
Project-Url: Homepage, https://github.com/ITMO-NSS-team/MetaFEDOT
Project-Url: Bug Tracker, https://github.com/ITMO-NSS-team/MetaFEDOT/issues
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Requires-Dist: fedot (==0.7.1)
Requires-Dist: numpy (==1.24.4)
Requires-Dist: openml (==0.14.0)
Requires-Dist: pandas (==2.0.3)
Requires-Dist: pymfe (==0.4.2)
Requires-Dist: pytest (==7.4.0)
Requires-Dist: scikit-learn (==1.3.0)
Requires-Dist: scipy (==1.10.1)
Requires-Dist: tqdm (==4.65.0)
Requires-Dist: thegolem (==0.3.1)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 2317 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.41.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
meta_automl/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
meta_automl/data_preparation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
meta_automl/data_preparation/datasets_train_test_split.py sha256=7b8QYIQVp4gQ3B9by-7Pn36hkk1XIy3b6_9kdrDm8tA 3357
meta_automl/data_preparation/model.py sha256=cCjJ8DnaksbbWAYMmUZmaUbFjjaBE-VmLJw16hCijcM 422
meta_automl/data_preparation/dataset/__init__.py sha256=B1wM6xie8ChFdaC_XgLXam0rfmQXGDfP9k1gNKh2Vr8 193
meta_automl/data_preparation/dataset/custom_dataset.py sha256=w3Gu0WKmnTIyLcMW1gWzuP8MEDXRkyuAe6A9GS441-0 986
meta_automl/data_preparation/dataset/dataset_base.py sha256=VBTQKYr-s2bkvhv16LEdRfZPSTP-ZjZuFpXhmC0ax5w 1095
meta_automl/data_preparation/dataset/openml_dataset.py sha256=-vbjX8nbr7JHKj7qh_40qw1aEUlf8DYfaCjGy-CqOqc 1906
meta_automl/data_preparation/datasets_loaders/__init__.py sha256=ucEPxDU6gq-YEUa-98wLKCMG-_Oc7N2IHqvmyJWzMtk 103
meta_automl/data_preparation/datasets_loaders/datasets_loader.py sha256=DTcdmnCukjiPUSF1QNo3I-GTAws2eD-8OFBNve25qB0 425
meta_automl/data_preparation/datasets_loaders/openml_datasets_loader.py sha256=9CxYLfzCcnHJF4jcF_IKv0mkBOcEturpHqGleswUk7k 1450
meta_automl/data_preparation/file_system/__init__.py sha256=2oVJuER_Iw-IVBIvFzug2svoh5BECh6keGnXXeSIKh4 543
meta_automl/data_preparation/file_system/cache.py sha256=-4LMfSf5QcM88GkKIl0P7zi4WmYe9bPSTFo1Ypvo-u0 3508
meta_automl/data_preparation/file_system/cache_properties.py sha256=Mz-FE0ffukwXjwl1CrBdu3038IrrO-Bn5bGvqTmpMSQ 483
meta_automl/data_preparation/file_system/file_system.py sha256=jtDWTns0UVR5T6okkRYKyN8vHIauxfkj31vPsR8olmo 578
meta_automl/data_preparation/meta_features_extractors/__init__.py sha256=osbDeQopaso462e-Gw8PtEF2Kx3afFSOrc4UKYhp0ag 105
meta_automl/data_preparation/meta_features_extractors/meta_features_extractor.py sha256=QLZIAvNpNkJ6MEhtdVM1I7NjP_yDAaFUpfxpqAYoiC4 1153
meta_automl/data_preparation/meta_features_extractors/pymfe_extractor.py sha256=e4E5QXgG4-HOItcqq5gCueZYSj-qV_VsvMRtTylq62o 2809
meta_automl/data_preparation/models_loaders/__init__.py sha256=-jblr8UWzkLCw_dXI4ju54uiBz_sw1MjE51uWs6oVv8 168
meta_automl/data_preparation/models_loaders/fedot_pipelines_loader.py sha256=Ytg4RuOxYfF-8xxWgyUq5L_gULliSZtjncTH9Kqh2_Y 6384
meta_automl/data_preparation/models_loaders/knowledge_base_models_loader.py sha256=o3YRhAwW1QB95Syh0kZoNKqERgZpZ9QUN_WqIfietGQ 3119
meta_automl/data_preparation/models_loaders/models_loader.py sha256=2XPS9kcCdrzJg9nqsRMKxWL9imqgFQv8TBFpaIE2gG0 259
meta_automl/meta_algorithm/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
meta_automl/meta_algorithm/datasets_similarity_assessors/__init__.py sha256=AxEJ0y2zMWPsEG72Bvv__vSIq9Wk_s0Yg9NLRjIpPiA 181
meta_automl/meta_algorithm/datasets_similarity_assessors/datasets_similarity_assessor.py sha256=a3a6PTtTJ_bMHR7PpD7o4J9CFALI6WJ5BFkWzJz-luc 407
meta_automl/meta_algorithm/datasets_similarity_assessors/model_based_similarity_assessors.py sha256=RHUbBVvq-QiTLXRtJBckkVYNkVzEpVXeXoYO8blBP0A 2149
meta_automl/meta_algorithm/model_advisors/__init__.py sha256=LQoDOiyTPVCj4rPdsZMMrsMYLidEyMX7fKwgyrrUS4Y 241
meta_automl/meta_algorithm/model_advisors/diverse_fedot_pipeline_advisor.py sha256=qmOkO8iTam2RFMulj93s7xZszl_vLFQYyM5FihyF-zo 1707
meta_automl/meta_algorithm/model_advisors/model_advisor.py sha256=xiPDy902ggEBA-UqzePZEaiDWg30ht_gLsVHEFWcm5Y 1647
MetaFEDOT-0.0.5.dist-info/LICENSE sha256=UqBLi3ypBvqztZ6UKKQR46o3st4rL4iak42hVagHNGI 1567
MetaFEDOT-0.0.5.dist-info/METADATA sha256=o4bNqN6ylRG-nA_jswv6qLpRdUwjbaRv0TvvYDhpKG8 3158
MetaFEDOT-0.0.5.dist-info/WHEEL sha256=AtBG6SXL3KF_v0NxLf0ehyVOh0cold-JbJYXNGorC6Q 92
MetaFEDOT-0.0.5.dist-info/top_level.txt sha256=_9KVTCnzC6KhzsEPpQnxNFvct39rNe1pvrL5hV4h1iQ 12
MetaFEDOT-0.0.5.dist-info/RECORD

top_level.txt

meta_automl