melmac

View on PyPIReverse Dependencies (0)

76693 melmac-76693-py3-none-any.whl

Wheel Details

Project: melmac
Version: 76693
Filename: melmac-76693-py3-none-any.whl
Download: [link]
Size: 63945
MD5: 506ed3acae12ab6ee301b71db808e625
SHA256: 0b913ab12a0b7b6ad37c403580ea2381cf828595dff689daaf40fe43fab8a5ab
Uploaded: 2020-05-27 08:47:07 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: melmac
Version: 76693
Summary: A package for neural multilabel and multiclass classification.
Author: Janos Borst
Author-Email: borst[at]informatik.uni-leipzig.de
Requires-Python: >=3.6
Requires-Dist: numpy
Requires-Dist: transformers
Requires-Dist: nltk
Requires-Dist: node2vec
Requires-Dist: scikit-learn
Requires-Dist: pytorch-ignite
Requires-Dist: tqdm
Requires-Dist: networkx
Requires-Dist: bs4
Requires-Dist: pytest
Requires-Dist: pytest-cov
Requires-Dist: rdflib
Requires-Dist: h5py
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.34.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
mlmc/__init__.py sha256=gwECZ3aHMBfQQakztGEAp27QGT1M136UX-Nr5hSpb-w 398
mlmc/_version.py sha256=prYSVg8Hje5yIRL7EEdAiQOHtkp0PdBq1gJ5ATaUCdQ 19
mlmc/save_and_load.py sha256=10FbobnOJMKLJFH_tP8F4LucZK_iWR98-KNMf7bFvBg 2630
mlmc/data/SingleLabelDataset.py sha256=LxWiOga9uA0xmIt4NwSobZxrVWvVdbEpe8feePKDddQ 54
mlmc/data/__init__.py sha256=DjNBt9g2BHYMkUi-hDfy7cISB2_0L9P-WoE7W2vJNKs 11864
mlmc/data/data_loaders.py sha256=uqoOAFPcySLJK49Nk2NAy-44KbKXAyGZOCPSfzmAceg 18856
mlmc/data/data_loaders_text.py sha256=0F1YAUsVChb24S1wEiBtNv6YkZ4tgRzAPy8jRlhk9Io 3229
mlmc/data/sampler.py sha256=X-rQ9KpMBY9hSq06ilWWwoBwptEztUe9DHG_TrKspt0 7076
mlmc/data/transformer.py sha256=vDHueXi2LZRVLKxOUZ0SJvutpVbjaz5GMTz-60n-oV4 937
mlmc/graph/__init__.py sha256=sKicERCdeim3K8JUlob11T9k1dQTerWEtJ_VHu_K1gg 805
mlmc/graph/embeddings.py sha256=WEsHTlj4NkFSe9XokFA7iGl4XxpYMVFvBqxZ3jENV7I 2994
mlmc/graph/graph_loaders.py sha256=am9BY9-fi_b6EDG2WxemAe9oplfqJhIVGJ4XOMIch50 7014
mlmc/graph/graph_operations.py sha256=77rI7LnKTbMq1idzvkHPHfJlM1VuuQR_G5HWr-2_Rjo 5985
mlmc/graph/helpers.py sha256=C7oy2wSc4qNCoH5rL_1tKDIfTyyi_KlKqwTkfSvg5B4 1739
mlmc/layers/__init__.py sha256=FjDJyNXuOCIwOaIlJAE_N6697MrXQv3R0cW-1OtnBqI 325
mlmc/layers/label_layers.py sha256=6ymu54JRrMLZY_pNZO57miGhTU5_AmPFj95UIJgqfy0 5272
mlmc/layers/lstm.py sha256=3wQLbLETNSMaWmvM_OUdgG73oo1wLIgjcpK4WmjGKRc 5156
mlmc/layers/metric_layers.py sha256=sKQjzD9iXjYZv43RDQb0Xf-Cyqbv-O3OnQwnxLxQkq4 3434
mlmc/layers/mogrifier.py sha256=fFeCyZPUQoaxFE41_wg6XKoW2yEc8G14vwO5evxRCAY 5816
mlmc/layers/probability.py sha256=zyzcS7AcyehcaIvq0ZwsNk1-8iJURvA2C2N_Wn7oEOc 575
mlmc/layers/weighted_aggregation.py sha256=1wu5qfVcR67-YoOseEHcf_eZiO2w9Q3l5sY07R1wk-w 1026
mlmc/loss/__init__.py sha256=u4p3RWZBL7iv7mCiq4N6KledY_KEhpGw-cMNwQreKZE 56
mlmc/loss/smoothing_loss.py sha256=PN2kvfgrI9h453tdO1ijBH6HanSAF8LTHj1jl1GhCs4 585
mlmc/metrics/__init__.py sha256=DouUdAu4S6BTLNZTDFMIraI4aW4Rd5BnGiwPyMBg9vM 102
mlmc/metrics/multilabel.py sha256=wrJv6UgUq5RLzro8H9vZ40YZF1n0IXWnnEVLmi1LTWs 2982
mlmc/metrics/precisionk.py sha256=ipNKGVLWSIAC5di_51ORl5tsVaJpS8nVVrY3GIAmfE4 756
mlmc/models/KimCNN.py sha256=UCyCnhjSLATYfjXG6y5PIjSjTrzeH0N1J9Ihz0DlIYM 6470
mlmc/models/LSAN.py sha256=M6vtF4MxoWz20z3ay_OENmpOXCotjr3sNS3fwgU3lvo 3620
mlmc/models/LSANOriginalTransformer.py sha256=H1dttbkZYdbnwXvPSWVkJyChFcRyF2cAWJnmKOSDcSc 5582
mlmc/models/LSANOriginalTransformerNoClasses.py sha256=qrdQYh8-IGpyN822ImdfNjQeeIMDuxz-j-wViDxg8h4 5521
mlmc/models/SKG_ML.py sha256=MM5eBofJFx9yZ_uggNPzdjl2r9YiqyO1HnKe6G-CvL0 1898
mlmc/models/XMLCNN.py sha256=prx4XVXUrjEFE62-25aMHPOsPwqek1Kw7HYX4Z96H7g 6643
mlmc/models/ZAGCNN.py sha256=Xzbjo8_zVBMQ_2AdsZE2lfOZ2QEwJ9cOZtZAsSa2zFo 3950
mlmc/models/ZAGCNNLM.py sha256=Lk3Okg1C7in4F29gOKYWGlR9KVi2G7l3VxaSMB_Jffg 5037
mlmc/models/__init__.py sha256=ua7FijnFbie09sPNtXTOUue7E30FmaJ-BPmW5IvmIHI 603
mlmc/models/abstracts.py sha256=LsdVBAzusa7O15LXtlv2m87Yi789NnR3sAjuhiDlKmk 17295
mlmc/models/abstracts_lm.py sha256=c-JCLfRPLhLVN8fn7p6tkaVMshNEEp3A2uLN7g2Uadc 6444
mlmc/models/lm_mogrifier.py sha256=xn6vaV_7glUOf8b58ctGM_iMRQ4MqmLg6GiUAS-Q1UM 4527
mlmc/representation/__init__.py sha256=jsOEXGe5Fu_H54yvB6vH2SjSnn2-3jB3wpLKI1kweF0 1899
mlmc/representation/character.py sha256=5EFumKGKNpin6gmn51gf-UAfNIvnY4g80yY2x_krcY0 588
mlmc/representation/custom_embedding.txt sha256=4s6iD-LAo-hbjS5vERC0V7I0mFQ_nTzBAvL_Wv8JWVc 135
mlmc/representation/embedder.py sha256=PjKXauFngQ1j1CI3EnukhYrT0kwqadBzugktZj1uPk8 4738
mlmc/representation/label_embeddings.py sha256=Tg0dZeRSEeZvwr538mMnq3IYisDdFQRA-zgrRuaHyKE 1685
mlmc/representation/labels.py sha256=oU-sqz0f1TQ8YQupD9Imr81SVhOJZ4vNvNatMvoZBI8 4732
mlmc/representation/model.txt sha256=zgcTjlzi-p_n39IfP_4xK9ink-KaOKbUXXbFv0oXtNo 7168
mlmc/representation/output_transformations.py sha256=L1frZmOFDfAEQk5xsKjqZGXJwQ58ph41b8L_yZLHzsg 788
mlmc/representation/postprocessing_vectors.py sha256=0JVccxlpQfe2foNCzwgpgyxQLdzt4EusxSX7qFJJ2Ek 455
mlmc/representation/representations.py sha256=lTYsfspkFd7HkCncrEewTvIJ66vZRdRUVDri9qToksE 9408
mlmc/representation/similarities.py sha256=Y5xmb4rlTIzWlMFYPXK9Y9EwKq2wW5yLXLHqUAf2yBo 132
melmac-76693.dist-info/METADATA sha256=VlnF6Kh2o8uJvmHm6Hl3hzgOU09C_DfHUBx1k8IWYNA 580
melmac-76693.dist-info/WHEEL sha256=g4nMs7d-Xl9-xC9XovUrsDHGXt-FT0E17Yqo92DEfvY 92
melmac-76693.dist-info/top_level.txt sha256=S-_WTDdqgVE0q4lO0wGgyyXWjzMEJ2YXYH36xxZOvv4 5
melmac-76693.dist-info/RECORD

top_level.txt

mlmc