medusa-kernel

View on PyPIReverse Dependencies (0)

1.3.1 medusa_kernel-1.3.1-py3-none-any.whl

Wheel Details

Project: medusa-kernel
Version: 1.3.1
Filename: medusa_kernel-1.3.1-py3-none-any.whl
Download: [link]
Size: 277840
MD5: 5fc5d2f480d5f8e87e1192e0bf4e6139
SHA256: 0baba9dc39e09d93a6976710465c1c6740c9a28741611b9507409c9b8619d9b6
Uploaded: 2024-07-11 08:28:57 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: medusa-kernel
Version: 1.3.1
Summary: Advanced biosignal processing toolbox
Author: Eduardo Santamaría-Vázquez, Víctor Martínez-Cagigal, Diego Marcos-Martínez, Víctor Rodríguez-González, Sergio Pérez-Velasco
Author-Email: support[at]medusabci.com
Home-Page: https://medusabci.com/
License: CC Attribution-NonCommercial-NoDerivs 2.0
Keywords: Signal,Biosignal,EEG,BCI
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Topic :: Scientific/Engineering
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Requires-Python: >=3.8, <3.11
Requires-Dist: numpy
Requires-Dist: scipy
Requires-Dist: matplotlib
Requires-Dist: scikit-learn
Requires-Dist: statsmodels
Requires-Dist: bson
Requires-Dist: h5py
Requires-Dist: dill
Requires-Dist: tqdm
Requires-Dist: tensorflow (<2.11); extra == "tf"
Requires-Dist: tensorflow-probability (==0.16); extra == "tf"
Provides-Extra: tf
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 4267 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (70.3.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
medusa/__init__.py sha256=fHtCz1DGlpFKYTS3GE_yr6VUd902f-ea2LMpSxOfUTA 92
medusa/artifact_removal.py sha256=1FhtnrfMM5gxLDkpOG3E0X-yr00l0dxJFg_EIL43coU 18934
medusa/classification_utils.py sha256=4MnacCw0WREwxyhLl6bwB0FuohkoNrDal_hOdULZdK4 3170
medusa/components.py sha256=pEHU8cH9xmUFXeBl_1cvh-PBPqeRgEwU7z5ihYJcix8 67256
medusa/deep_learning_models.py sha256=pXL6QWVgMAkZcx31I8odKsGenZg4eLIXaWy3fw3D5rM 68933
medusa/emg.py sha256=oGfiHseKPAB8LSnAY-KLy_uX4RaVdJ6x9-qNiYbf1OQ 1720
medusa/epoching.py sha256=383riPgbQnlPMytaRxnu1ObIoFK_AWr2kpR5bnfcyV8 12401
medusa/frequency_filtering.py sha256=3GfkcX4_lKpdOcbDTZsRPmxlgvChf5aG4k7C9YVqdB4 10652
medusa/nirs.py sha256=3aSo0K25v3EVSOcpQx8ZMDXbOnDn_tCJPKdj6HYg3ic 1602
medusa/notify_me.py sha256=2cTdGMJ8PrRRNObmJKVN3cVx7INwIWW0MogQ-KOC-jY 1605
medusa/optimization.py sha256=gVsCUHImt4nkI3zbxpZT9HfCoyolLxP8yQrSjUQ4mis 10807
medusa/performance_analysis.py sha256=ZxuJtsfcMnIIvrzZ-2RehTOvlSvwW8yAQfY-fgrxXVw 391
medusa/signal_generators.py sha256=ZrfKwOosSvchSNZdjtOzsMoBG9FH1Qsr9Q37hPaHmBk 1303
medusa/signal_orthogonalization.py sha256=RmjXv0I9goyVWfMiQOFzCVO4b-q9ZsaG2humTxywNbU 8664
medusa/spatial_filtering.py sha256=vFoUGt08jYdcoJmQBfAMY3izwZEi9FaInDcyIEADPbs 34209
medusa/tensorflow_integration.py sha256=skcxiPwZDZWqPcVkipQ8MZTwrczGEFcxcLhzS2_iS_o 6030
medusa/transforms.py sha256=idPotQd1H60rqUwmqtyJGMSai5jM-1EdkHv2e0a3z7E 4488
medusa/utils.py sha256=uOj3yAbGl96BE1R8p09d8l2kOj_TWTy8Q4ThVsthZkw 423
medusa/bci/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
medusa/bci/cvep_spellers.py sha256=svjDjmK2kuG40nUEiTvRGoRFNzLcrm6OXrsQOD7G6qU 98545
medusa/bci/erp_spellers.py sha256=hooTUcsZfIiXyNGeQHWWAintNSMfJ5wWmb5uJgwt2F8 106122
medusa/bci/metrics.py sha256=lOsHJVlT_AvYIdPr2tk64YwxolLSa0-5RbXRe7pglr0 1389
medusa/bci/mi_paradigms.py sha256=ExiuSnhkw1gnszswj5lebmTTv2gRFb86k22L6ccYkOM 62872
medusa/bci/nft_paradigms.py sha256=mvwRJbDdCa4fHafG_WcMaZsaCJAH6FYXI4tiNt9zSMY 40799
medusa/connectivity/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
medusa/connectivity/amplitude_connectivity.py sha256=iZTQu0kRjBzxx7I3Yu79aIfYHqVuYqG8Ge8Iik2uaMc 20650
medusa/connectivity/phase_connectivity.py sha256=sAlI479t__K_r0zzbLCIxmE4mj01-7MR_VvAefzwIZw 9914
medusa/graph_theory/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
medusa/graph_theory/assortativity.py sha256=4LXn6SWSssU9cw0mV2Cp-eQQKwBGNzg60tqPkhUf78c 2911
medusa/graph_theory/betweeenness_centrality.py sha256=pxzMLQ92dv2TtvknSh-AftHFRNDJTtUE0Y4tge50F88 3310
medusa/graph_theory/clustering_coefficient.py sha256=80r_61hSPK1Efsem_YH3jx-KP-U16cv393_f99P6h0c 3266
medusa/graph_theory/complexity.py sha256=WvnnFjUTKtvXuP_Z7T3RWmAeTV8W-RgL_hXbfHv-36Q 7337
medusa/graph_theory/degree.py sha256=ikwl70U8uUK8zf0OTV1c5QRI2tU1eCRLQpx067lfqeU 3759
medusa/graph_theory/density.py sha256=RxQ29B_sGR7h-Uth8TABpDgF6VcHlrFfyueEsfw2NKw 3278
medusa/graph_theory/efficiency.py sha256=W61LSuRY6OyFvACY-QZsrGafRPzibGuVEePGDwg2Iso 3166
medusa/graph_theory/eigen_centrality.py sha256=_nLvQOQG0chaaCgsktHaYGt5feo2L6eDnMqiSFYiJLY 821
medusa/graph_theory/modularity.py sha256=-3Ct0GT6UjxanXzgoM3Jxb3E42C6BTqo2M9uUTFDpaI 3784
medusa/graph_theory/participation_coefficient.py sha256=CogyhZ_fmz_n4UodOJWRqvfYKvtiNvdWE4NGXdUtdAY 1529
medusa/graph_theory/path_length.py sha256=EXjxQRuED4Xn5T8tElL-3oBb7lONsbREOXpIAyOdmys 5503
medusa/graph_theory/surrogate_graph.py sha256=7obD3s7HRfcYdxwekOvWQNWdZ-kLwtZmXVTdYJDBc4g 857
medusa/graph_theory/transitivity.py sha256=34XHbYYx2Zlf6VB1PHTn0jL2_RNzg_AAcVlGNuK6qZs 2255
medusa/local_activation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
medusa/local_activation/computeLZC.dll sha256=_wCOBK--AFR8EUekzYcFZ3DLUdOUfiX5PDH4KX8wxlY 330752
medusa/local_activation/nonlinear_parameters.py sha256=4OJKcL--St6OoxHxyv2wabpfCZYK9_-PT1k-UcdwH6w 19691
medusa/local_activation/spectral_parameteres.py sha256=upDjuMCFIq1UbqLMM2tBnqRUHlU4djxSBQJ9GGZsxpE 7505
medusa/local_activation/statistics.py sha256=roMKE-LOU3TiKR01mgFYub3RAuKJBXnoGb8d9_WaNkU 1298
medusa/meeg/__init__.py sha256=6xgamHuxCAUffZ9kqkuD-kY093fOTpJEtAGiETVbjYU 71
medusa/meeg/eeg_standard_10-05_2D.tsv sha256=mve2_G7giJMjT-BWsgRbQ2psCCwf2R6YnEGRI91SUXk 6886
medusa/meeg/eeg_standard_10-05_3D.tsv sha256=F-zGrrz13kDELE3sD5v3VMwT9lRV2P3A9rE_xjP4A98 9324
medusa/meeg/eeg_standard_10-10_2D.tsv sha256=YbMYKSvajVdrX_Re-65grtFm5DtbY810Aoxt3iI12J0 1369
medusa/meeg/eeg_standard_10-10_3D.tsv sha256=J3Du7D0ZUHetcm4IVK33CiNLUxpYN4G_Kh2xuf6KVaw 1889
medusa/meeg/eeg_standard_10-20_2D.tsv sha256=cwylhogj5fDVSbs4SsYOKn1OAKEvMEYWJhyLOLkhK0g 441
medusa/meeg/eeg_standard_10-20_3D.tsv sha256=SRLExFJXWnAWzT9xQy-LyJvQEez7wh82HKfUGy-LovQ 611
medusa/meeg/meeg.py sha256=dfm6y-GGB7N1e_iVZNRN0EZq9IXfHAWiWo0B2w8CpDg 32953
medusa/meeg/meeg_montages.py sha256=ZkpRkkGITKWTnvuW7QgAReqkePpg-m43VMaFNfOlUsw 11663
medusa/plots/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
medusa/plots/erp_plots.py sha256=Hf-fTBOkGSCrEz1G-YN7MpzlGF6UqcsMTp1nEYpZldM 6941
medusa/plots/generic_plots.py sha256=-Qdc3MEU5S4r8gGq516zOB-0Ze8M9In998HZ5LVb5Ks 2053
medusa/plots/head_plots.py sha256=lctx-tt1JX7eNVS_VUcQTlLrtuG_jZdG1BuScmZfVJo 20859
medusa/plots/mi_plots.py sha256=ad_3-vkbP1coLXpJfJGN0uhLakGxxVWy0y5h48wfdd4 45662
medusa/plots/optimal_subplots.py sha256=R416CrXJ205IaM0YYQgN8nvWX1kQY3U9ZA-OCpn7nT4 998
medusa/plots/timeplot.py sha256=CnQZEdQKiKDAIzljFSLECkeM1_AF-HfmqTn9i2EGb1Q 23209
tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/test_components.py sha256=tNmKBS9RiWmQXUPNmoCwhNXqRum-L6trWGmCX_5uJC0 274
tests/test_signal_generators.py sha256=ELXF67dT_kXelLREmuCUwGVsCk_hvEIVrY-yFZSAN9U 388
tests/test_transforms.py sha256=kKVPLKidgWwoUjwoB0UPKVDMTkAa07MhMrQx-aJ3uS0 507
tests/local_activation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/plots/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/plots/test_topographics_plot.py sha256=sYQh6C9lBUEGI9gqdbx6-uujx4cZtFr8WxPRPclbC_U 434
medusa_kernel-1.3.1.dist-info/LICENSE sha256=VTBkGT40bznCfq6Yyw7bTTGrxXqD_UAMEJTT3WuwCrc 12522
medusa_kernel-1.3.1.dist-info/METADATA sha256=Af-TlGS89o1dvsFSoSDeOZFLy1IefBXBTJyyQkFHbv4 5424
medusa_kernel-1.3.1.dist-info/WHEEL sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk 91
medusa_kernel-1.3.1.dist-info/top_level.txt sha256=rircCwjstczLJC1WHyDbMlgTofKD3Wv2QrM3RJ4H4io 13
medusa_kernel-1.3.1.dist-info/RECORD

top_level.txt

medusa
tests