matbench-discovery

View on PyPIReverse Dependencies (0)

1.3.1 matbench_discovery-1.3.1-py2.py3-none-any.whl

Wheel Details

Project: matbench-discovery
Version: 1.3.1
Filename: matbench_discovery-1.3.1-py2.py3-none-any.whl
Download: [link]
Size: 35977
MD5: 511b2ec734c4ec8851e3b0083ed8364d
SHA256: 5d744f2c6dd1760a6b2b0421d7d677206f9f9838574c4d03db43fc8260158914
Uploaded: 2024-09-11 19:00:12 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: matbench-discovery
Version: 1.3.1
Summary: A benchmark for machine learning energy models on inorganic crystal stability prediction from unrelaxed structures
Author-Email: Janosh Riebesell <janosh.riebesell[at]gmail.com>
Project-Url: Homepage, https://janosh.github.io/matbench-discovery
Project-Url: Repo, https://github.com/janosh/matbench-discovery
Project-Url: Package, https://pypi.org/project/matbench-discovery
License: MIT License Copyright (c) 2022 Janosh Riebesell Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.
Keywords: Bayesian optimization,convex hull,high-throughput search,inorganic crystal stability,interatomic potential,machine learning,materials discovery
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Chemistry
Classifier: Topic :: Scientific/Engineering :: Physics
Requires-Python: >=3.11
Requires-Dist: ase (>=3.23)
Requires-Dist: matplotlib (>=3.9.2)
Requires-Dist: numpy (>=1.26)
Requires-Dist: pandas (>=2.2.2)
Requires-Dist: plotly (>=5.23)
Requires-Dist: pymatgen (>=2024.8.9)
Requires-Dist: pymatviz[df-pdf-export,df-svg-export,export-figs] (>=0.11)
Requires-Dist: scikit-learn (>=1.5)
Requires-Dist: scipy (>=1.13)
Requires-Dist: seaborn (>=0.13)
Requires-Dist: tqdm (>=4.66)
Requires-Dist: wandb (>=0.17)
Requires-Dist: crystal-toolkit (>=2023.11.3); extra == "3d-structures"
Requires-Dist: gdown (>=5.1); extra == "fetch-wbm-data"
Requires-Dist: umap-learn (>=0.5.5); extra == "make-wbm-umap"
Requires-Dist: alignn (>=2024.1.14); extra == "running-models"
Requires-Dist: chgnet (>=0.3.0); extra == "running-models"
Requires-Dist: jarvis-tools; extra == "running-models"
Requires-Dist: m3gnet (>=0.2.4); extra == "running-models"
Requires-Dist: mace-torch (>=0.3.6); extra == "running-models"
Requires-Dist: maml (>=2023.9.9); extra == "running-models"
Requires-Dist: megnet (>=1.3.2); extra == "running-models"
Requires-Dist: pytest-cov (>=5); extra == "test"
Requires-Dist: pytest (>=8.1); extra == "test"
Provides-Extra: 3d-structures
Provides-Extra: fetch-wbm-data
Provides-Extra: make-wbm-umap
Provides-Extra: running-models
Provides-Extra: test
Description-Content-Type: text/markdown
[Description omitted; length: 3122 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (74.1.2)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
matbench_discovery/__init__.py sha256=w6IThYF2nqXi0E1k7nuUESDkxnbPp1E_CnXDEht0jEE 3240
matbench_discovery/data.py sha256=dipI14UryLcj3MFR2qYZFrYxlkXqnw_-3vacoTwp8vw 12587
matbench_discovery/energy.py sha256=ML7VZCGk8EmEM4rvbrS43aTqaraTPvNB9W_-pjSKbpk 4922
matbench_discovery/enums.py sha256=m1lWxgD5jYPyjft_u0Zic8Enouo9Ts-XpUQUtfmUw2k 5970
matbench_discovery/metrics.py sha256=7Av2DCzd1EjVGEtBEKf7JnNp3MTB4ZNlOv1qCrpqlTg 5606
matbench_discovery/models.py sha256=A_tPSfzbtgvRh8fjwEV-URVjx8l6ZZUWmwhezXdDVZg 1311
matbench_discovery/plots.py sha256=MFIdP5ZYlmSSjM9rjhOTvsWcNvX1vQ1YwCipEp3v9VE 35609
matbench_discovery/preds.py sha256=LpGOUDJ6xX8vJdch9CS0WZtT7g7VqId6rA2CAfqgHoA 13114
matbench_discovery/slurm.py sha256=Ma1zjDg3HIbG1vuurOZbLcrgtCYQgaxacfm9n2qEmXg 4651
matbench_discovery/structure.py sha256=RrfUcMByiEwrh3ch76EYcon8PHDER5IluyksTepWbVs 1826
matbench_discovery/figshare/1.0.0.json sha256=VWbqRKz8KHswNgNz_CuAF8v8EeoPXyBZwRqGql_7OCA 2069
matbench_discovery/figshare/readme.md sha256=7m48wW6oexCzwnijUpwBpOysO1j3Pfpr-Q2bC47ZBuo 140
matbench_discovery-1.3.1.dist-info/METADATA sha256=fRUzFYa2AyUHaqC3WXho6By1JxOLNXHx4ZlDUWw7HIA 6654
matbench_discovery-1.3.1.dist-info/WHEEL sha256=qUzzGenXXuJTzyjFah76kDVqDvnk-YDzY00svnrl84w 109
matbench_discovery-1.3.1.dist-info/top_level.txt sha256=buwDPNciMHoHNqQktpZcWvrpGh4-M5WSiUq2kPNybME 19
matbench_discovery-1.3.1.dist-info/RECORD

top_level.txt

matbench_discovery