manrodri-test-titanic-classification-model

View on PyPIReverse Dependencies (0)

0.0.6 manrodri_test_titanic_classification_model-0.0.6-py3-none-any.whl

Wheel Details

Project: manrodri-test-titanic-classification-model
Version: 0.0.6
Filename: manrodri_test_titanic_classification_model-0.0.6-py3-none-any.whl
Download: [link]
Size: 44682
MD5: 86df575e7a05ba5e31ec261896e07b96
SHA256: ae3c6ca9c7471ddce59d97e4943a3d036db4a5d7b320efd9ce4514768817ec30
Uploaded: 2023-05-06 16:39:09 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: manrodri-test-titanic-classification-model
Version: 0.0.6
Summary: Example Titanic dataset classification model package from Train In Data.
Author: manrodri
Author-Email: man.rodri.barr[at]gmail.com
Home-Page: https://github.com/manrodri/titanic-deployment-practice
License: BSD-3
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Requires-Python: >=3.7.0
Requires-Dist: numpy (<2.0.0,>=1.21.0)
Requires-Dist: pandas (<2.0.0,>=1.3.5)
Requires-Dist: pydantic (<2.0.0,>=1.8.1)
Requires-Dist: scikit-learn (<2.0.0,>=1.1.3)
Requires-Dist: strictyaml (<2.0.0,>=1.3.2)
Requires-Dist: ruamel.yaml (<1.0.0,>=0.16.12)
Requires-Dist: feature-engine (<2.0.0,>=1.0.2)
Requires-Dist: joblib (<2.0.0,>=1.0.1)
Description-Content-Type: text/markdown
[Description omitted; length: 73 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.40.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
classification_model/VERSION sha256=GtQiYxN7Pyc28ek1ilH6Kpr_wuRDGEZCOqrnMBB7xfs 6
classification_model/__init__.py sha256=eN81o81JK9M_VZIwyi_QTh4GCHW-l07-aiSYi7dGoYo 862
classification_model/config.yml sha256=wLP6BAkMJ00iyxnRxxxH1ihuewAIH2PWR1rnhZcx_Ss 711
classification_model/pipeline.py sha256=-N0jyBwyWsiBrhsXRrUKCRYy_dyE9xuWJMVDyyLsezk 2155
classification_model/predict.py sha256=o7okmsuCVswIbpF8FRMiaQELI2arNWo_khcXKlOTho0 1035
classification_model/train_pipeline.py sha256=816PJFRrGPuJfZwxq4leTGzaFb45ymFm36KyPJMAr4M 1060
classification_model/config/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/config/core.py sha256=PEBXBWDM1R_jL6VMUX-VNnLa9M5hAfy2Ew-qO1TK228 2068
classification_model/datasets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/datasets/raw.csv sha256=xhfbLHRwcWJQ9vABvlEwTHa8yIFVJ6uLrnNL3KBzVzc 117743
classification_model/processing/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/processing/data_manager.py sha256=zY7YcaKdDZKXcl5N-hTx0UocmpbnsPlj-6efq8tuU8M 3115
classification_model/processing/features.py sha256=JeeZMJqUc64VmKA1ngx8C8WPnZhPuDisU7GLAOpO4_8 660
classification_model/processing/validation.py sha256=Hlmo2qt70fCmkQlyngniDcEd7H3CCiYSDZF51mG6y5E 1389
classification_model/trained_models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
classification_model/trained_models/titanic_classification_model_output_v0.0.6.pkl sha256=nwKx2oz-V4hEVmxZyuTPOnr8Aj8ViSsms88PbfFPHoM 3742
manrodri_test_titanic_classification_model-0.0.6.dist-info/METADATA sha256=CBlc2dUkD2XTvawwvHk4GyaCu_OFIbjgIiJbfN2YQtE 1319
manrodri_test_titanic_classification_model-0.0.6.dist-info/WHEEL sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 92
manrodri_test_titanic_classification_model-0.0.6.dist-info/top_level.txt sha256=VmH6pvgPC8wm0j78xquIgbVbxaqmh34ZTHhYhLSNQ0M 21
manrodri_test_titanic_classification_model-0.0.6.dist-info/RECORD

top_level.txt

classification_model