macrosynergy

View on PyPIReverse Dependencies (0)

1.0.7 macrosynergy-1.0.7-py3-none-any.whl

Wheel Details

Project: macrosynergy
Version: 1.0.7
Filename: macrosynergy-1.0.7-py3-none-any.whl
Download: [link]
Size: 381400
MD5: 33185e1f33dc24586a4b0912436ca6f9
SHA256: e09230245fd773c6d7e47817ac5490ddb56da89ea536711bc35e4591e408dec8
Uploaded: 2025-01-21 17:09:34 +0000

dist-info

METADATA

Metadata-Version: 2.2
Name: macrosynergy
Version: 1.0.7
Summary: Macrosynergy Quant Research Package
Author-Email: Macrosynergy <info[at]macrosynergy.com>
Project-Url: homepage, https://www.macrosynergy.com
Project-Url: repository, https://github.com/macrosynergy/macrosynergy/
Project-Url: documentation, https://docs.macrosynergy.com
Project-Url: tracker, https://github.com/macrosynergy/macrosynergy/issues
License: BSD 3-Clause License Copyright (c) 2023, Macrosynergy Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Financial and Insurance Industry
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering
Classifier: Typing :: Typed
Classifier: Operating System :: OS Independent
Platform: Windows
Platform: Linux
Platform: Mac OS-X
Requires-Python: >=3.7
Requires-Dist: seaborn (>=0.13.0)
Requires-Dist: matplotlib (>=3.6.0)
Requires-Dist: pandas (>=1.3.5)
Requires-Dist: statsmodels (>=0.13.2)
Requires-Dist: scikit-learn (>=1.2.2)
Requires-Dist: numpy (<2.0.0,>=1.21.6)
Requires-Dist: requests (>=2.27.1)
Requires-Dist: tqdm (>=4.62)
Requires-Dist: Jinja2 (>=2.10)
Requires-Dist: joblib (>=1.3.0)
Requires-Dist: pytest (>=7.0.0); extra == "test"
Requires-Dist: pytest-cov (>3.0.0); extra == "test"
Requires-Dist: coverage (>=6.0.0); extra == "test"
Requires-Dist: pytest-xdist (>=3.3.1); extra == "test"
Requires-Dist: flake8 (>=4.0.1); extra == "test"
Requires-Dist: parameterized (>=0.9.0); extra == "test"
Requires-Dist: linearmodels (>=4.28); extra == "test"
Requires-Dist: openpyxl (>=3.0.10); extra == "excel"
Requires-Dist: notebook (>=6.0.0); extra == "notebook"
Requires-Dist: ipywidgets (>=7.6.5); extra == "notebook"
Requires-Dist: ipython (>=7.28.0); extra == "notebook"
Requires-Dist: jupyter (>=1.0.0); extra == "notebook"
Requires-Dist: ipykernel (>=6.4.1); extra == "notebook"
Requires-Dist: black (>=22.1.0); extra == "format"
Requires-Dist: pydata-sphinx-theme (==0.14.4); extra == "docs"
Requires-Dist: Sphinx (==7.1.2); extra == "docs"
Requires-Dist: sphinx-autodoc-typehints (==1.19.1); extra == "docs"
Requires-Dist: sphinx-automodapi (==0.16.0); extra == "docs"
Requires-Dist: sphinx-remove-toctrees (==0.0.3); extra == "docs"
Requires-Dist: sphinx_design (==0.5.0); extra == "docs"
Requires-Dist: myst_parser (==2.0.0); extra == "docs"
Requires-Dist: sphinx-copybutton (==0.5.0); extra == "docs"
Requires-Dist: sphinxcontrib-mermaid (>=0.8.0); extra == "docs"
Requires-Dist: requests (>=2.27.1); extra == "docs"
Requires-Dist: packaging (>=21.0); extra == "docs"
Requires-Dist: openpyxl (>=3.0.10); extra == "all"
Requires-Dist: notebook (>=6.0.0); extra == "all"
Requires-Dist: ipywidgets (>=7.6.5); extra == "all"
Requires-Dist: ipython (>=7.28.0); extra == "all"
Requires-Dist: jupyter (>=1.0.0); extra == "all"
Requires-Dist: ipykernel (>=6.4.1); extra == "all"
Requires-Dist: black (>=22.1.0); extra == "all"
Requires-Dist: pytest (>=7.0.0); extra == "all"
Requires-Dist: pytest-cov (>3.0.0); extra == "all"
Requires-Dist: coverage (>=6.0.0); extra == "all"
Requires-Dist: pytest-xdist (>=3.3.1); extra == "all"
Requires-Dist: flake8 (>=4.0.1); extra == "all"
Requires-Dist: parameterized (>=0.9.0); extra == "all"
Requires-Dist: pydata-sphinx-theme (==0.14.4); extra == "all"
Requires-Dist: Sphinx (==7.1.2); extra == "all"
Requires-Dist: sphinx-autodoc-typehints (==1.19.1); extra == "all"
Requires-Dist: sphinx-automodapi (==0.16.0); extra == "all"
Requires-Dist: sphinx-remove-toctrees (==0.0.3); extra == "all"
Requires-Dist: sphinx_design (==0.5.0); extra == "all"
Requires-Dist: myst_parser (==2.0.0); extra == "all"
Requires-Dist: sphinx-copybutton (==0.5.0); extra == "all"
Requires-Dist: requests (>=2.27.1); extra == "all"
Requires-Dist: packaging (>=21.0); extra == "all"
Provides-Extra: test
Provides-Extra: excel
Provides-Extra: notebook
Provides-Extra: format
Provides-Extra: docs
Provides-Extra: all
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 15589 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.8.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
macrosynergy/__init__.py sha256=f9Mb7P15kuQD0wruihatWDyqP-NPVHg3aeqobaEjqPA 959
macrosynergy/compat.py sha256=fMz-dj5zvpvoytBLOKVsjv-HyZu2q-RWt2u8-XnjkG4 792
macrosynergy/version.py sha256=jNUM3SZguBdy_XMchkNZ8kOMZ-55blJi_PG5pEbjV08 467
macrosynergy/download/__init__.py sha256=tK1pPqUEqaRbHauYybiyP3eOU5ur1ws7Txho3usWcEo 184
macrosynergy/download/dataquery.py sha256=ZX9uFm6YItPEDj7PrvSKbBzwbAH7PB5Qllkxli5-hdM 44557
macrosynergy/download/exceptions.py sha256=U3MgA_8LV6ciKmMLoAD4eGI-qC0wFmIIAqqIL2YiNHk 1647
macrosynergy/download/jpmaqs.py sha256=DzcERzVU4I4pPCeNT9f9osQyBjDHIK_n5-rj-zhzwKo 55861
macrosynergy/learning/__init__.py sha256=ELmgYodJF4ic6pcsiXsiyNleQLHuezgMx9MmW_nBvug 2569
macrosynergy/learning/cv_tools.py sha256=Dgaccj5uZuSZ3Ek6RITgop9nP-6As4VmBL7-hU6DT1Y 8603
macrosynergy/learning/random_effects.py sha256=EiJE-heLQiJ38sHncqdJcDgu7goSiGlQmqKiuitGMjU 10346
macrosynergy/learning/forecasting/__init__.py sha256=bK0ZQGhSWSlMrsIEkC1tbv-faOW8kpvTdpvS0ASelUQ 923
macrosynergy/learning/forecasting/naive_predictors.py sha256=arBthXcGnjFa4eNG_Elf6UVm5WpFrg_mRW-0E1mCEtI 5024
macrosynergy/learning/forecasting/weighted_regressors.py sha256=k9RqN7Vaka45hIrQtV6g3OcCpUKv6bkHIXSN1zm0qfg 12604
macrosynergy/learning/forecasting/bootstrap/__init__.py sha256=P1x8opiCHQC5K-vE68kKV2HMb_vqD1gNwIVi_gBH-Kk 190
macrosynergy/learning/forecasting/bootstrap/base_modified_regressor.py sha256=B4Bq-47zOdTfDr5lRviPr_odhxVk4el0RKLrSY-PRmA 18058
macrosynergy/learning/forecasting/bootstrap/bootstrap.py sha256=-JAl8qxUQlwsq-Cdw829fXzIbmRrvCZZGMZufZBiHNs 17055
macrosynergy/learning/forecasting/linear_model/__init__.py sha256=cRTBZsS9Vjaq5UtMKj47Lp2YH__l6c2HMRApIcrZY1Q 614
macrosynergy/learning/forecasting/linear_model/lad_regressors/__init__.py sha256=OfvdiXE-ZeSNUBkz3XeSvVNesCFXFfK73YXe2QOMtXI 249
macrosynergy/learning/forecasting/linear_model/lad_regressors/lad_regressor.py sha256=dR8nQigQ8OApUk9LRz3imDGG7c3bn7lSDt2LgoGhawo 18966
macrosynergy/learning/forecasting/linear_model/lad_regressors/weighted_lad_regressors.py sha256=x8CECWKVBeBJuE4deWjLdNxWtB2YVz4pEMI-jSSqpgE 10040
macrosynergy/learning/forecasting/linear_model/ls_regressors/__init__.py sha256=m3NNplLmiriDGL3H24caanUtUTIyUT3dsjhucsGAfvA 469
macrosynergy/learning/forecasting/linear_model/ls_regressors/modified_ls_regressors.py sha256=_9-xWuUKc_2Rg18B1nKdqxHL6DIEJTw4ZRdR7CYUpUs 31107
macrosynergy/learning/forecasting/linear_model/ls_regressors/weighted_ls_regressors.py sha256=wyfOHRIei8hvtQxf2nMRdqs8DvKCbQRqVLFWxG3qOtc 11820
macrosynergy/learning/forecasting/model_systems/__init__.py sha256=O6x_vhwqhaYHcaY46GUvRpVEzcUNu5wsPbrhxVvYX0s 378
macrosynergy/learning/forecasting/model_systems/base_regression_system.py sha256=xapFobRBJK7heg_nE9e_UjqHiLlpx3PZt4_Zls46_94 14022
macrosynergy/learning/forecasting/model_systems/regressor_systems.py sha256=vyScORSLkdm67o2HIMpFGYeXH47uj0gg6Zz8KL04iF0 30560
macrosynergy/learning/model_evaluation/__init__.py sha256=pGBi6g6Jksie-QWEUfUqSSDwX4fWss2AU85Md67nFHg 538
macrosynergy/learning/model_evaluation/metrics/__init__.py sha256=RIadRWvEbtyo6oHzICZudTHnMHq_wU2fP8cbVXfFoNs 465
macrosynergy/learning/model_evaluation/metrics/metrics.py sha256=Mwrg62lfqPHduqTFcuePiCzJvRk0pNnRC8uwf93Dvp4 30354
macrosynergy/learning/model_evaluation/scorers/__init__.py sha256=xZTDE7Q_eeXl8fTfZwpJFXpgDVDmGNHPzoVOC0DqH0k 86
macrosynergy/learning/model_evaluation/scorers/scorers.py sha256=Z_D5bLRL_vx7Nx7EftYR_APiPypOSKHPf4enVXJWBx4 8358
macrosynergy/learning/preprocessing/__init__.py sha256=I_fbnMjYNjizUnRfoQVz1lq-xJ0rExZdWSohYv-qpSc 533
macrosynergy/learning/preprocessing/panel_selectors/__init__.py sha256=KcR2wGgzc_kSppe4Ry6vaVz5Kw7NN06iRPrEHMquw3U 236
macrosynergy/learning/preprocessing/panel_selectors/base_panel_selector.py sha256=WfbvexmtujR0anGVayHnmMwQK0YlPjz8Z2cRiARbElc 8364
macrosynergy/learning/preprocessing/panel_selectors/panel_selectors.py sha256=VW1S88mCnpMVi-9q7rbtY8fFEeTviFjLRSoLP5x991g 13714
macrosynergy/learning/preprocessing/scalers/__init__.py sha256=Y06qBCEL_a5yUttlwAnXU7o2HHkQTgiBunwijukK0ws 219
macrosynergy/learning/preprocessing/scalers/base_panel_scaler.py sha256=LelcSOYdaMFaKGv-qB1a4EBFNr819gmlEnc_XWmX2PA 8053
macrosynergy/learning/preprocessing/scalers/scalers.py sha256=Y-BlVVH8YjKCkEijUS4vmd9yKwz-d1oJgaeNchnUJw0 6404
macrosynergy/learning/preprocessing/transformers/__init__.py sha256=exwchRgF8-xdO-88seFzincg311bxOB6BJExEkaR_7w 118
macrosynergy/learning/preprocessing/transformers/transformers.py sha256=kKm0yl3tVrCiRQBQByvx6_g1wCaAAG__oi9mgkaPXYM 23705
macrosynergy/learning/sequential/__init__.py sha256=HwI4NQpOQW9m7XlVko0N0-88dI-9tPfI2zS7NeIA8Vo 219
macrosynergy/learning/sequential/base_panel_learner.py sha256=ZiwpEl0mGjwKmf8FI8YniqKr5Ceal8kM1we7RfzNFf0 58303
macrosynergy/learning/sequential/beta_estimator.py sha256=j5gMv64bY8Qmk0rljjwO5TjqNyKYF4KNk6vy2IiSd8U 40272
macrosynergy/learning/sequential/signal_optimizer.py sha256=Ih7N9SqLQ6FrFuj97wcOhbrz7l4HNVK5F5nhxJ8JyHY 74290
macrosynergy/learning/splitters/__init__.py sha256=gB5BxtJRVFpW7JOuR0lVjU6D9m-yRG4gjxXvk9VXK9o 583
macrosynergy/learning/splitters/base_splitters.py sha256=pYMlozreBonFyk8EhB4oAhwWnRbedEiffe5LAa6KDvI 25606
macrosynergy/learning/splitters/kfold_splitters.py sha256=t4sLbCF8ov9EH8-UuwgdYMfrPbdVH8Rdv77SjC-VMzg 10603
macrosynergy/learning/splitters/walk_forward_splitters.py sha256=fW2lE2dXA_F83s2GLW484rBWfguhGLds0cCxfPHjmtw 22337
macrosynergy/management/__init__.py sha256=V9T6C44o7LE4VL4z6RmEynO8CAWWZqqJItTni3YqgQA 1776
macrosynergy/management/constants.py sha256=eUBnSLaHsxkNds2d1LKo-C83p2PqIHTJzLz76RffMUc 1808
macrosynergy/management/decorators.py sha256=XwP6Qco2XNLid8fGfYcmai-8_KbxZPREkRdJxEoxYzA 12539
macrosynergy/management/validation.py sha256=TRXEIj0UEJhWZn4ZbXD4QTkfJ2o5ITR5vzNf08k6AkA 9043
macrosynergy/management/simulate/__init__.py sha256=cUrLxVLORN63VJ7OJzYBfTKoGGdpzZ15yaSX8rwJP5Y 437
macrosynergy/management/simulate/simulate_quantamental_data.py sha256=eZsc2z61Dx5RqtiXXFpJJOGaS1h1O8mXSh_jgyXky0k 22683
macrosynergy/management/simulate/simulate_vintage_data.py sha256=MhBCn7myzXcA-KD-HwbIKoEqaOz7drz9_IVAgBYBk4w 12225
macrosynergy/management/types/__init__.py sha256=J3Avx3f89AtRT4QWfFQyf3JWNn2-sM_zamijrwBWdQQ 277
macrosynergy/management/types/generic.py sha256=Q7fBsflC1Bh3JmU8l86dexwRz2VSxdvm99FgTa0L9dY 978
macrosynergy/management/types/qdf/__init__.py sha256=Y9m5MxNuzpsRCZw5anHX708jn5U7qQpM9pO6mNIXdZ4 147
macrosynergy/management/types/qdf/base.py sha256=oTdqUyDt17T0w3uz4z0idfHLtuovS5uHLB9sXQAbXb4 2042
macrosynergy/management/types/qdf/classes.py sha256=rxVthTCRs_hQuwaTG4PldVyaaKkLLv7x_8nJztWAWFU 24277
macrosynergy/management/types/qdf/methods.py sha256=8xdnGp_2oj1S74nTjf06_4kytFm6646G54oLcmTefBQ 35950
macrosynergy/management/utils/__init__.py sha256=ECJniYMypSq_w77vxDeCsJrjSO3-LUScWRne23R14Ks 2647
macrosynergy/management/utils/check_availability.py sha256=ZnAFZoVysE4hfpH9r8R1QNF0HLPlqhlUuw8azwlwudA 8970
macrosynergy/management/utils/core.py sha256=3KrdN2-SWpSg-CvXurlDkMgAl1gBweUNqRrCzQHlfi4 11879
macrosynergy/management/utils/df_utils.py sha256=n992I4rYmktkUb6HhkYvlMTuIT_fHscXNFKgxIE3bVI 54818
macrosynergy/management/utils/math.py sha256=S6i1i2rtGLiZhnTA8OvaUuxQ2SDQQe7VxqexuYA4Tjk 5459
macrosynergy/management/utils/sparse.py sha256=rGovEXWee-yl1KQ1SXG_jpOlwNXRnCh9qEX7Jjkx4l0 48831
macrosynergy/panel/__init__.py sha256=aDbVxA9tKZItstUhlWO_YhTOKhD0i2-Lj7zsbV6Iibc 1206
macrosynergy/panel/basket.py sha256=ceB5GOLbW2rBnif7nHJU6I62MxoLqTfiH4cQkSWBeWo 37216
macrosynergy/panel/category_relations.py sha256=Gw--1ucPfhS6lEulDFnwG55RMkaVcBNXfkG2iD87f4Y 41373
macrosynergy/panel/converge_row.py sha256=EsIipSk5VynwV72n0t4FB4MfPuHVEK_fxHyQ8Jockh0 2814
macrosynergy/panel/extend_history.py sha256=CCn1S3VGMrfnsK19KY1nYamPEUexa0s4el5gwaDrJ48 7762
macrosynergy/panel/granger_causality_test.py sha256=trMe_BwoI4OJ36CqVbQkxXMfxmFDfrnB6DzSh3bW-Ac 12650
macrosynergy/panel/historic_vol.py sha256=zrBzGbeZJTL6QHnxZAPIeTTfgdk_AK71lQw27w3Yt64 12452
macrosynergy/panel/imputers.py sha256=iaJSx_hikY4Yni4b8gkywxP1trP0CdSVaOTUXh2f350 5609
macrosynergy/panel/linear_composite.py sha256=NTeZijDKU7vZ1sSjBQ5I6SFQ8PcL-QJc2ZTXviOxpPQ 26195
macrosynergy/panel/make_blacklist.py sha256=r8diNWUjAg0Ctze2z3m43twiKdW504LRDfj7PZOLh5E 5965
macrosynergy/panel/make_relative_category.py sha256=_LTsaxyD9gjgb7Ug2gQhsYt_Z8s_vXbOM41Yi7lSLDQ 11162
macrosynergy/panel/make_relative_value.py sha256=kBk0IjKtL-DdKRxYGv8RFu0akZMwRyT0cVgDFIPsOv8 12870
macrosynergy/panel/make_zn_scores.py sha256=xPSWmHf_6VTOS99XABRoFjUnzlFBLb6qHrLLGojgk_Q 15550
macrosynergy/panel/panel_calculator.py sha256=xp-YpXOeiKgidJfoC8DWdb7CBkYOPbdVgHFrrdT5aMA 12941
macrosynergy/panel/return_beta.py sha256=DMZ6e4yM4COsjxegcEjnB0whbmVfnnZT37u4T9qO5LU 18672
macrosynergy/panel/view_correlations.py sha256=4xYoBYR9sTpO_yzyUtXxssiG0Dhc9L4-vXIzzV6fyOE 7544
macrosynergy/panel/view_grades.py sha256=29Vp5XPUzFAIGjHZf23WFjaN1ABaApBYqrYzjddh9vY 4081
macrosynergy/panel/view_metrics.py sha256=qxotYnJt5d21Dv9WFeto4-9o5WQODzuVvBSAeSvKEEY 3344
macrosynergy/panel/view_ranges.py sha256=njWehH5gtls4kd8p_ORY2nauYhEWO990SKpEkIgT3Q0 4688
macrosynergy/panel/view_timelines.py sha256=f23_36BRmRqcn2YMZEwCiYUv680E_0HS6fKEjsS4k3w 7357
macrosynergy/pnl/__init__.py sha256=FD6MOgpPt4aeYASBOyEzuOlhhkAdZkOQlzWyRgY1Cwk 186
macrosynergy/pnl/multi_pnl.py sha256=OyUHH9BujWJI6_JO3P63ExUB4SIS9vZefsdYKVhq_Lg 17718
macrosynergy/pnl/naive_pnl.py sha256=Uf2xEKvppxA_JrjihVd225IMA9vnN944oICfSFV5n2g 60456
macrosynergy/signal/__init__.py sha256=EbhZ4XsYDxp0OVAhw6uk2g3DrlISWGcBjomTYne4eMk 163
macrosynergy/signal/signal_return_relations.py sha256=g2R4BQ5Vl3kgVFAeNcOqK_FTTW1we-tRKQ22sOPluO0 67809
macrosynergy/signal/target_positions.py sha256=MpUOsCr-svQ7rb_DXVhKreQnuaHg82T6tN7AtmpJs1k 25747
macrosynergy/visuals/__init__.py sha256=VcdTDvkkqpoZ93sKhpOgXKqXAzYrQ7un1vSVCdPuUmM 806
macrosynergy/visuals/correlation.py sha256=kxRsDQQCwJPJlYh7rBYQGqXgGyMtvk10tbWIMot3Uls 21549
macrosynergy/visuals/facetplot.py sha256=Qm7RGrTjvqQm2c6JCtkeCgXJCnjsdITMyE2uZTS2Nxw 31468
macrosynergy/visuals/grades.py sha256=MCs1e6uM7J30Wyb5_8WavI0qPjgReP_6w_PRWAkknQI 4175
macrosynergy/visuals/heatmap.py sha256=6KB9ZGyWa8odwRpwZyJ8eJ0yt5-zeeD0xa5OHd_UAPM 17122
macrosynergy/visuals/lineplot.py sha256=kxV4yZkAjya2PrFVybVSkF9YUU0OPb2NEWl1qMJO2m0 11588
macrosynergy/visuals/metrics.py sha256=t25eIL9lfSqQztlpqehiK9xTpQqa6IBgvamKaOCpkMg 4368
macrosynergy/visuals/multiple_reg_scatter.py sha256=Fx5MYy_SyM8iccJqb7vhDgXyF_3FIUxVUpFDilwK6HM 9901
macrosynergy/visuals/plotter.py sha256=EhETyuRtsbkwYrp38i_T3d4cBJIYdYPNNjwXLaI5aOI 5130
macrosynergy/visuals/ranges.py sha256=s1FLCCw0CTbvueiHlLlnc2sCHJKS_1ahW3N-YSaMLx0 8573
macrosynergy/visuals/score_visualisers.py sha256=o93ipXXnBxR2-1tAmmP4Uuv3X6ub1fDcmQRLNjLZWh4 28399
macrosynergy/visuals/table.py sha256=XyVd99bhmTSG4qWAZua3pHmfaSNBxzexDXhmyLyCIV4 3110
macrosynergy/visuals/timelines.py sha256=FYlP5h3mZ43hPgWiK61qu3Im7uKgecXm22gInk7Hcg0 15712
macrosynergy/visuals/view_panel_dates.py sha256=UaSyaGJobMTkWBnPhwnFn4v7_YIW2WgWCbUWzRer4uI 2065
macrosynergy-1.0.7.dist-info/LICENSE sha256=ydexgQVXNonIsHSZAzNtzpZ5PxFrF7hYjvzGtiTs09I 1499
macrosynergy-1.0.7.dist-info/METADATA sha256=kljmwY_KMJ_p0ee0N0dVVMGC2ukgfkmKD6hEzk8fLfY 21585
macrosynergy-1.0.7.dist-info/WHEEL sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8 91
macrosynergy-1.0.7.dist-info/top_level.txt sha256=7DqqyP-eoQfvxInEWjb2iWvYcw_2forCMSGMVWUAOYc 13
macrosynergy-1.0.7.dist-info/RECORD

top_level.txt

macrosynergy