lsts

View on PyPIReverse Dependencies (0)

0.2.1 lsts-0.2.1-py3-none-any.whl

Wheel Details

Project: lsts
Version: 0.2.1
Filename: lsts-0.2.1-py3-none-any.whl
Download: [link]
Size: 63473
MD5: b7aeb9a1466645819a72cf1d9da97daf
SHA256: 0ec69b47ceb9beaee1589c0a6a23accb35a3af538b9603f349d1b7c623d6c8a5
Uploaded: 2024-07-06 14:44:18 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: lsts
Version: 0.2.1
Summary: A lightweight, fast, advanced deep learning time series package for long and short-term forecast and missing value imputation of land surface variables.
Author: lizhuoq
Author-Email: m15004059308[at]163.com
License: CC-BY-4.0
Classifier: License :: Other/Proprietary License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.8,<4.0
Requires-Dist: einops (==0.4.0)
Requires-Dist: huggingface_hub (==0.21.4)
Requires-Dist: matplotlib (==3.7.0)
Requires-Dist: numpy (==1.23.5)
Requires-Dist: pandas (==1.5.3)
Requires-Dist: patool (==1.12)
Requires-Dist: reformer-pytorch (==1.4.4)
Requires-Dist: scikit-learn (==1.2.2)
Requires-Dist: scipy (==1.10.1)
Requires-Dist: sktime (==0.16.1)
Requires-Dist: sympy (==1.11.1)
Requires-Dist: torch (==1.7.1)
Requires-Dist: tqdm (==4.64.1)
Description-Content-Type: text/markdown
[Description omitted; length: 764 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.9.0
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
lsts/__init__.py sha256=TX18hLSlLZHEda6-zs0MZ8zc_zFO1WSkZ_Zfd5RsqNU 182
lsts/imputation.py sha256=16HNnp1c1UT4FdPTJkf6FZrLOBQOirId1lFHl1npRAc 6759
lsts/layers/AutoCorrelation.py sha256=Nfwj5VJBmlPr8S3l6zmidq6zefP0mtXPha0FJ6jBj-s 6440
lsts/layers/Autoformer_EncDec.py sha256=SHRbS7ZHNV6YRXkqhV35xZ_X33_MZkx2U1H-w5DEBz4 6831
lsts/layers/Conv_Blocks.py sha256=jqlDPYhdAPDTyb7tAonywv24cVxjOT9na6XDBOzVlI8 2367
lsts/layers/Crossformer_EncDec.py sha256=7izFyNOkT03mfOmG5rRCSIgmog-k2Ph5kZQadVh5NqE 4333
lsts/layers/ETSformer_EncDec.py sha256=0-AaqqFDGqjLAYjvp4w49JSJyhCUG00noDcC_dabnfM 11395
lsts/layers/Embed.py sha256=F-fDV3MkxBoNpCehmclVt4L96QWqux98vDxOFevUrjU 7012
lsts/layers/FourierCorrelation.py sha256=7zxrZ4NkTsDVc74oNucMtgd7R_NJyPOjCuoB8jHfZNQ 7346
lsts/layers/MultiWaveletCorrelation.py sha256=zwuPr0Wht_q0o8HFIWI8B2Li-dc3WyC6mprNIUJ0c0I 23039
lsts/layers/Pyraformer_EncDec.py sha256=q5I5ZneprS5Jx78XHhXJYQjTiLiJjSnuUg0Y3-C9UwY 7433
lsts/layers/SelfAttention_Family.py sha256=8rgD-3TkdDZaWTXMgxQyG3eIJ3To0cpHaH-7BzoJ8b4 12060
lsts/layers/StandardNorm.py sha256=P2kNxfwOOV1PH_5jlnF1SNGL0E9FGCWDCLvl85JwP18 2184
lsts/layers/Transformer_EncDec.py sha256=eyb0RZc1w0HxYQEfa8JLneuOzDvPYeTxVDGZgnKkT7Q 4929
lsts/layers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
lsts/long_term_forecast.py sha256=AchxjAC26FYGdzBdCBiyVLTjoBBs5Yqr9p3bO_C_0bo 13247
lsts/models/DLinear.py sha256=LKTjbHo5_BfMLinKGQRGAOL1b3FwNz9Rr7LG3qhJORA 4588
lsts/models/EALSTM.py sha256=zLo8oPd6jG0CuuaCv732eZKIL1HMknuKmG3vm8cMyVQ 5856
lsts/models/LSTM.py sha256=EXJk2ECVEfrXEi7fjdPB1fM2qVk1SceApQp5H-pO5l4 1723
lsts/models/PatchTST.py sha256=xhPDPtKkqfcGQU3_ZC8CbcsfQCZ_7eJjwen9CNreng0 8750
lsts/models/TimesNet.py sha256=NWUH9puvSbHLImbSP4hFllh_EZcdIarKzN-lRcJ1Ct8 8688
lsts/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
lsts/models/iTransformer.py sha256=B1ht4nSrnUZDHi0pyxHhMte2Ir_JpPKKLPeJfs_lP64 5817
lsts/requirements.txt sha256=9vGviMN_AxwDqnd7dl7zOzIujCVkYjW1CFs_tpG1tFA 209
lsts/scaler/imputation_short_term_forecast_air_temperature.joblib sha256=xGIErh_uUaKXWQa-DfrSYW9S-tqPlvoKUm9Z_ueu21E 943
lsts/scaler/imputation_short_term_forecast_precipitation.joblib sha256=uZ8gWqp77a-94gT8FPKTVdAYo49R69O53WhmWCPcMOo 943
lsts/scaler/imputation_short_term_forecast_snow_depth.joblib sha256=OIP4wpeMXqMis6Q4eXpH6xk_I6BJ5tPTn68Iu9qywO8 927
lsts/scaler/imputation_short_term_forecast_snow_water_equivalent.joblib sha256=O_3YbjR9AEy9hgEx_68NhAmGUS5aEiOeAz-rvCy0sGE 943
lsts/scaler/imputation_short_term_forecast_soil_moisture.joblib sha256=hyNDbEeFUXNZ-HiiGIeEjCnSOuCnz0mtjjDzWspxYlg 943
lsts/scaler/imputation_short_term_forecast_soil_suction.joblib sha256=4551mGETBn7xTqg8GQKvSpZkWfUuV6lBvqgCQOSaDts 943
lsts/scaler/imputation_short_term_forecast_soil_temperature.joblib sha256=_GL1NhGa6kHAbQyarFF5luGU9unPvYsq3uTqXlcYkRE 943
lsts/scaler/imputation_short_term_forecast_surface_temperature.joblib sha256=bGdjsEVCUDT_b38EaKeu_-3tmWYlV6q3txrlTW-Eb4M 943
lsts/scaler/long_term_forecast_air_temperature.joblib sha256=A9bQIFrvizk50r85X57IrSb0tJKkcqVNaQbd-Ld-37M 943
lsts/scaler/long_term_forecast_precipitation.joblib sha256=8-MNSo4yOe_zwpwwaonx6mM6wZlZLGkx4RIFQNCXcAU 943
lsts/scaler/long_term_forecast_snow_depth.joblib sha256=04M8T-UW14doxL2HnwffvM1vcL-BhGGpR19hgbNCMPA 927
lsts/scaler/long_term_forecast_snow_water_equivalent.joblib sha256=7Yk74B1Wik6M4QEO59Q4xZtiNammHCVhkWV5_KPyS3s 943
lsts/scaler/long_term_forecast_soil_moisture.joblib sha256=H0rnU4vo8n1cFYdaJBkMPgxeigslcfEsFCbYdqPiqyY 943
lsts/scaler/long_term_forecast_soil_suction.joblib sha256=IJzKC7sxv8tmTQui66deMGTbEntCc1Xvag7h9RzQne4 943
lsts/scaler/long_term_forecast_soil_temperature.joblib sha256=4hyRH0gsgN4M5Mm5qINc5nR3ketZr4Bls-ENeGyMiHU 943
lsts/scaler/long_term_forecast_surface_temperature.joblib sha256=46KT8OKj02JbJxyYWqrtoHGUY68-Yz_QFb6xY-1PYqM 943
lsts/short_term_forecast.py sha256=RyxJzsGboVPZTqBzVgcBU7DexshZk8G-h_-VhLcjvSs 4683
lsts/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
lsts/utils/losses.py sha256=1_kk-avfnbvwl7YDKaJa1yexYxEQFJVOv1hWNwoaoRY 3459
lsts/utils/m4_summary.py sha256=v8e6BnNsORm0VCsOaKFSgGQtgJiaf4NxMhIRNuik6Kc 6174
lsts/utils/masking.py sha256=AvRT5Sz67GXjQTKSOt2A5xMvGIcGaA-obXvYhJduCe8 832
lsts/utils/metrics.py sha256=dDpjp9JmHJlAJ72_W__oookuXKOBubMZ1eD7JxXPU_8 866
lsts/utils/print_args.py sha256=aG_JJq7r18h8-_y2n3Va9Ok5zbykFplP0MKH4heEAag 3210
lsts/utils/timefeatures.py sha256=MZs9ou8VzK6VFisbT0qaCw2mP6AGKn9gBqBt1WcljYU 4369
lsts/utils/tools.py sha256=Xl01wuxZMiV8XgY6-19kffKFHnau_fQq6zkJ0RwFuk4 4123
lsts-0.2.1.dist-info/METADATA sha256=ZCNQHVta297iDDi55enD6C_ZNo8zZSZF2-3_veULhg0 1907
lsts-0.2.1.dist-info/WHEEL sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg 88
lsts-0.2.1.dist-info/RECORD