lightning-uq-box

View on PyPIReverse Dependencies (0)

0.2.0 lightning_uq_box-0.2.0-py3-none-any.whl

Wheel Details

Project: lightning-uq-box
Version: 0.2.0
Filename: lightning_uq_box-0.2.0-py3-none-any.whl
Download: [link]
Size: 205223
MD5: fbbc3d74af0758dd4edce54df70256bd
SHA256: 3e9693838c99252638e8a36f7e7bd3ecfd78e7bdd2d2a176ae0a54f5a34db8fb
Uploaded: 2024-12-03 15:49:20 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: lightning-uq-box
Version: 0.2.0
Summary: Lightning-UQ-Box: A toolbox for uncertainty quantification in deep learning
Author-Email: Nils Lehmann <n.lehmann[at]tum.de>
Maintainer-Email: Nils Lehmann <n.lehmann[at]tum.de>
License: Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2024 lightning-uq-box Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Keywords: pytorch,lightning,uncertainty quantification,conformal prediction,bayesian deep learning
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.10
Requires-Dist: einops (>=0.3)
Requires-Dist: lightning (>=2.4.0)
Requires-Dist: matplotlib (>=3.5)
Requires-Dist: numpy (>=1.21.1)
Requires-Dist: pandas (>=1.1.3)
Requires-Dist: torch (>=2.0)
Requires-Dist: torchmetrics (>=1.2)
Requires-Dist: torchvision (>=0.16.1)
Requires-Dist: scikit-learn (>=1.3)
Requires-Dist: gpytorch (>=1.11)
Requires-Dist: laplace-torch (>=0.2.1)
Requires-Dist: uncertainty-toolbox (>=0.1.1)
Requires-Dist: kornia (>=0.6.9)
Requires-Dist: timm (>=0.9.2)
Requires-Dist: torchseg (>=0.0.1a1)
Requires-Dist: h5py (>=3.12.1)
Requires-Dist: ema-pytorch (>=0.7.0)
Requires-Dist: pytest (>=7.3); extra == "tests"
Requires-Dist: pytest-cov (>=4); extra == "tests"
Requires-Dist: pytest-lazy-fixture (>=0.6); extra == "tests"
Requires-Dist: hydra-core (>=1.3.2); extra == "tests"
Requires-Dist: omegaconf (>=2.3.0); extra == "tests"
Requires-Dist: jsonargparse[signatures] (>=4.28.0); extra == "tests"
Requires-Dist: ruff (>=0.2); extra == "tests"
Requires-Dist: sphinx (<7,>=4); extra == "docs"
Requires-Dist: ipywidgets (>=7); extra == "docs"
Requires-Dist: nbsphinx (>=0.8.5); extra == "docs"
Requires-Dist: sphinx-book-theme (>=1.0.1); extra == "docs"
Requires-Dist: myst-parser (>=2.0); extra == "docs"
Requires-Dist: sphinx-togglebutton (>=0.3.2); extra == "docs"
Requires-Dist: jupytext (>=1.15.2); extra == "docs"
Requires-Dist: ipykernel (>=6.29.3); extra == "docs"
Provides-Extra: tests
Provides-Extra: docs
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 10189 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.6.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
lightning_uq_box/__init__.py sha256=u0J6q4MMa6q6CbEeQhMNY7kgpU63a8k5z1WB0HZbGls 393
lightning_uq_box/__main__.py sha256=ho-BS2DQ6revZFeOR6eCFf-CE0V133V8t5bO7cI1pek 200
lightning_uq_box/main.py sha256=wF58ajxcT1WS7y5IcCKL23J-7zsEp5OTzPu1r5EyzKA 1032
lightning_uq_box/py.typed sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
lightning_uq_box/datamodules/__init__.py sha256=xNKHYom_yFcdpS6F9JVjU9YRjjNzVbFp6waAn-zj9hU 1153
lightning_uq_box/datamodules/toy_8_gaussians.py sha256=A05tr1x1kGnvRvSi-f3l30IllufgrsJiMNu2bZIp17k 1647
lightning_uq_box/datamodules/toy_donut.py sha256=-ok8gYvrxywXFwVs89JJo-HIYaWIbx6VgdAHDEKm_Oo 1543
lightning_uq_box/datamodules/toy_due.py sha256=T-peHA7hbf-v06jLddz9enhOwqS-ra_yCybuuGEj7_M 3957
lightning_uq_box/datamodules/toy_gaussian_sideways.py sha256=RI-Zq5SProRokMTeVL7vQwTPjwUXP4zILjA0EB3Azkw 1709
lightning_uq_box/datamodules/toy_half_moons.py sha256=zU658LpMDARcM5TCF4GLMusFX9Mc5zZIQJ3NR3K3zko 3451
lightning_uq_box/datamodules/toy_heteroscedastic.py sha256=qohh9upfcxk-L5PSsXT95pMCK2jp21UnVW9ksxMxg_w 7938
lightning_uq_box/datamodules/toy_image_classification.py sha256=NVrwdnnlLlGtYZHvWy7XHBZjJEAlqbg2ll7vWxRHLaw 1483
lightning_uq_box/datamodules/toy_image_regression.py sha256=K5wGp0lCzJnn4b_DlDqJ_l-noJpLLBLmMQ4l0Xm7oiU 1327
lightning_uq_box/datamodules/toy_image_segmentation.py sha256=qCxvyvrpQDbWinebVN9af9f7XEp43fUA8IxBzyjI6qs 1514
lightning_uq_box/datamodules/toy_pixelwise_regression.py sha256=xI5Vs_VAoyQdgkS612JH0vWR1vVIKqMxkC7lGew9BKU 1793
lightning_uq_box/datamodules/toy_sine.py sha256=xqs3j7dliT2PgUoBRKJK6fyG36WTA_tNeTnQCm99_RY 3210
lightning_uq_box/datamodules/utils.py sha256=NsxJjzrzHdvOD0KNZqI3aZE9SNIdfVJ4TSAxC4yrHio 417
lightning_uq_box/datasets/__init__.py sha256=If-V7opEaQGc-Q1YAEEAMjasUkSv1-QOjqeBe6ZMoWI 897
lightning_uq_box/datasets/toy_8_gaussians.py sha256=ObTk8vnv2908cFHu42rBLeqVQjUrq1c-w7qWHD3TPkU 2910
lightning_uq_box/datasets/toy_donut.py sha256=02dQvWkV-UxgePX8ijK3ECDnH0-ATqwhRROk9AsRQdA 1969
lightning_uq_box/datasets/toy_gaussian_sideways.py sha256=EdEy5RibZslGe6xcQevCwcVB4Vyi8KL3dPkyN34RbKs 2085
lightning_uq_box/datasets/toy_image_classification.py sha256=l9pFP_HeeRm2FWIKR6TH_oLGsvWwCtA8kNBdyaGDvj8 1411
lightning_uq_box/datasets/toy_image_regression.py sha256=bFHtGGjHJcjfijzD1VD9r_b9dqigAOzUwQ1o9KBBwSM 1098
lightning_uq_box/datasets/toy_image_segmentation.py sha256=UxOdx59OvbxmRvb9B-T9yAx0Zw-vhKuVfsx5yIiDVrI 1394
lightning_uq_box/datasets/toy_pixelwise_regression.py sha256=p5Jz2unbmEpBRvd9GlgBdS7HMd0B6sOr1NOdGAmuKoM 1383
lightning_uq_box/eval_utils/__init__.py sha256=AgsGQNAF4UgylM3tAJzkkD6h3EhQyM5dUP_289xqPNM 671
lightning_uq_box/eval_utils/uq_computation.py sha256=t9Yk67svTq492OLJhE2hi6z4nnqeXa95l2H3wSeTJOI 4527
lightning_uq_box/models/__init__.py sha256=9DhA368jXTNDP4_vmZRdXo47wDUQ-XDmF1CsADLkwbM 820
lightning_uq_box/models/cards.py sha256=szM2ISZUiFzfQ71Vdnv2sPvQebs5Eup6Ooy4WhkinDI 7114
lightning_uq_box/models/density_layers.py sha256=SSWNogx7FkOYrs_eDxhh7GpHIpYZZ6IJl9z5JO15aG4 7919
lightning_uq_box/models/fc_resnet.py sha256=mJqf7mPP46tUyxi8ge4UGokiTlAC50KJLHd-ovy0Xvc 2149
lightning_uq_box/models/hierarchical_prob_unet.py sha256=tHSOjh5nUPr-gJRs3Y_0w35jsTXSxffVuL-kZpQjbBM 14213
lightning_uq_box/models/masked_conv.py sha256=LIbdDMGvXM6g5DjaxKhBAqEJoLn0soeBjqRXN1VKXMw 3679
lightning_uq_box/models/mixture_density.py sha256=EAtquYhXYpGQCqSGpbSoiySsGCKx1sU-ODvz1nXu9XE 3536
lightning_uq_box/models/mlp.py sha256=rLntSYjMFZ_Bq3Eyb_rKDS7YNSfx492v2jsZcCG0bQc 1785
lightning_uq_box/models/prob_unet.py sha256=ZKIRmn1kCzM65Hz-PR7e01rSnryfpBMnVQKuEt_v12M 12438
lightning_uq_box/models/vae.py sha256=zsAvNYtPvwsnZjUUIp_EOCRo0c0WM2XFyh1saXaSges 3352
lightning_uq_box/models/bnn_layers/__init__.py sha256=D5dPSkDE-tK4kE7ijrpE9h57i-FMnLVFHgZxtsR2Xws 720
lightning_uq_box/models/bnn_layers/base_variational.py sha256=RX4OwQGaGGG1x5L_VkDTT9mgse1sKIXJ0KBoD8TLqHk 19382
lightning_uq_box/models/bnn_layers/bnn_utils.py sha256=bjBT_p7O3D44DEHc3uTUxQxPCNJGO3oICa1iXPFEOAc 7055
lightning_uq_box/models/bnn_layers/conv_variational.py sha256=EFYOTkrdZ-AJKVbiLR_eAIPWZrSKLH1tD1ZVMt672ZQ 16890
lightning_uq_box/models/bnn_layers/linear_variational.py sha256=QDP17AtvLtliIjRugn1_Ea-h6jJOzO37rH7K0H4g4e0 10476
lightning_uq_box/models/bnn_layers/rnn_layer.py sha256=FGdRTCLQtMfIZ20ack6uE8Xw0UwjuELF46PG5B2Ntcw 7243
lightning_uq_box/models/bnnlv/latent_variable_network.py sha256=rKekQ7RRtzIq88YgbiVMLnuKzl6fSsp75RaOsKYQT0M 5294
lightning_uq_box/models/bnnlv/utils.py sha256=qbEz1psR-oD31L33_3slWcgsw1cE6IaU6c747jQzjs8 3763
lightning_uq_box/models/masked_ensemble/__init__.py sha256=z1rWbK2KDQ0znwycq3nZ7Q1SfYTIGFy7smrYtPP4CiM 231
lightning_uq_box/models/masked_ensemble/masked_layers.py sha256=a_Wc-qq8Ukfd2En5F2TYzM49r0Q_yzw0y6T7OvWf7Pk 11034
lightning_uq_box/models/masked_ensemble/utils.py sha256=2jCXkaNifnV8N8-GaBydd2hmjdZtefajjYPONqaOoNU 2688
lightning_uq_box/uq_methods/__init__.py sha256=-KAxOXSsZr647XsVbkM9ftIS42J_UH5huXRefmG5N2A 6130
lightning_uq_box/uq_methods/base.py sha256=sp8DW9QCe13NCSQPc7QvmlInXVTGkPTFbMSnoG53m7g 21783
lightning_uq_box/uq_methods/bnn_lv_vi.py sha256=UoS9CvwTBfxrDtzBaKXeEMot7AbVmuHpW_0koSOzVXQ 32205
lightning_uq_box/uq_methods/bnn_vi.py sha256=C2v-DI1JlgviF4qKjT_8EsEL7IiIQUXWzqxZykCZSUM 23111
lightning_uq_box/uq_methods/bnn_vi_elbo.py sha256=uugr64UAQPu3lTvRDuyGnW8qUrXjgcjZscMU0BwGZpk 25987
lightning_uq_box/uq_methods/cards.py sha256=pFYgz63qyF4zcCHMWkGmNkJ9ifArEuiwnzO2saNs3Bw 29539
lightning_uq_box/uq_methods/conformal_qr.py sha256=ol3V3kJ4yRrC2ooexBeDkUBVk4w1qwx_hH-SDGbC68Y 7468
lightning_uq_box/uq_methods/deep_ensemble.py sha256=zf1n9A1MRJ4TpFKF3pdyWlnJSoM-ZC0X4oADzAsJoMY 12038
lightning_uq_box/uq_methods/deep_evidential_regression.py sha256=uIekJRB42RHRmsFnfdPI69EbQUT60whd0hLL_5NkzYs 9016
lightning_uq_box/uq_methods/deep_kernel_learning.py sha256=V8Gug8QK0zxxB8mN-ssIDbJVS8Kl5lMn9RuOLJMiyIU 27245
lightning_uq_box/uq_methods/density_uncertainty.py sha256=-3N4hYuA9JCOY6zboTGbdXqgZgiYwYoLAQuzY8cY-QQ 16904
lightning_uq_box/uq_methods/deterministic_uncertainty_estimation.py sha256=yfYRsX5EOQqI7KNN2tstZAWZjfntD4TtoFNUTiFfGdc 4648
lightning_uq_box/uq_methods/hierarchical_prob_unet.py sha256=K-z9L1v9YKwxoV_Zgq2Nti9knGlVEW6ywoAk7ezmiyg 21537
lightning_uq_box/uq_methods/img2img_conformal.py sha256=dZJgEc5-0CCaN4h7qrFafAp61-p_6EvLO9fDl-nTcGA 15046
lightning_uq_box/uq_methods/inference_time_augmentation.py sha256=475A6EnqLGPLc4WPxx5tyTIPFvExfSbo3WXeVcaho9E 13663
lightning_uq_box/uq_methods/laplace_model.py sha256=xm98WBYGi_st0J1wiQFxsruIAStXtXgQAmarkfHmJvM 17632
lightning_uq_box/uq_methods/loss_functions.py sha256=KL_zC5aJmUhwFGP-al5v9nEYhkx4knYYcCoCkeOXwCY 10260
lightning_uq_box/uq_methods/masked_ensemble.py sha256=oWbdwFuHp6L_EZJwKi3yksa-YxDyQQs29ozD1TlD7Wk 13184
lightning_uq_box/uq_methods/mc_dropout.py sha256=lA7pCYbJe7QUF9dZ8RFXRUdRWglkldNTkfsGUGF9KKM 20002
lightning_uq_box/uq_methods/mean_variance_estimation.py sha256=YX1B_ACsyQX-qIqWD0M7AMfXAYI9a5yzkD7KarpwpeY 7358
lightning_uq_box/uq_methods/metrics.py sha256=4gH6JRs6EpvLdpBaJ1AY3l1tgAqBJK8okmxqXGT4_fo 3848
lightning_uq_box/uq_methods/mixture_density.py sha256=9rFF19WlYbray4yk-XTvQ1ZML9HPUdeqylvixhGz4ZU 9846
lightning_uq_box/uq_methods/prob_unet.py sha256=fI75tZNQ56gQTeLZxNiiFYnZRnHqG_Rjb4eB5XBOO7k 14948
lightning_uq_box/uq_methods/quantile_regression.py sha256=pTdmkJQ5kSoRSmUWeyV65SYg5436OT9KCWvB10RIIHA 10424
lightning_uq_box/uq_methods/raps.py sha256=lr4jjRwPKytJ4_vPH4A2Adx5zMFoHDU85rue1qTIAnA 24883
lightning_uq_box/uq_methods/sgld.py sha256=jwzmo_Q9PoefmmcGrfkaohHvE9AoWPG6jsLBvM0Z954 13774
lightning_uq_box/uq_methods/sngp.py sha256=dAYfLL-ZOmzikL5WJv1HXv6JBcvIo9BqgAlgG30FQV4 18575
lightning_uq_box/uq_methods/spectral_normalized_layers.py sha256=fZnVFcMTRpRYjFgeAwK9cZLxKUiF3m7AkceA6Whc7C8 22605
lightning_uq_box/uq_methods/swag.py sha256=3Dpu5EEe3q_JdhoVrgCq4X9l2ngiHKwybsD9YhucIhs 23875
lightning_uq_box/uq_methods/temp_scaling.py sha256=1O74XJh2lavjEJCJiU3l7iaxvHbdRi1m0-gJ5WKjr0M 6676
lightning_uq_box/uq_methods/utils.py sha256=Wai3bSGOG7ZTyfBxjtGQYh1lO-bqxLetrWteaJimYdo 16950
lightning_uq_box/uq_methods/vae.py sha256=zfXwrBj67Pehnuo1P7kB4KmB7eG6WwVmnnlW9tiKiMY 19072
lightning_uq_box/uq_methods/vbll.py sha256=i5GMpvtNE3SwxqVErm5HIKaW4gAU5dHftTqat_HXKRw 18204
lightning_uq_box/uq_methods/zigzag.py sha256=5NUfv23Rc7xrlWAK1iDUfJzkuwsxgj0NHBpRr0Giqzo 12519
lightning_uq_box/viz_utils/__init__.py sha256=MyP72o6ZLhU8Ukov3tmK_Ew7mx4TIYZOdz456iv3fp0 524
lightning_uq_box/viz_utils/visualization_tools.py sha256=U4y8OtTDQLtdKwDZH4yZ8TmwpqcESFiy0RivdnliOI8 10935
lightning_uq_box-0.2.0.dist-info/LICENSE sha256=VkOyrTUuEFtPuR1V0TaijsM_Y6AAtNHCFOJ3y-3UCHU 11346
lightning_uq_box-0.2.0.dist-info/METADATA sha256=ol2KJ1hxyskUMDxpWsx7XqeS6PTaPL_MFb05E8s3A18 25618
lightning_uq_box-0.2.0.dist-info/WHEEL sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U 91
lightning_uq_box-0.2.0.dist-info/entry_points.txt sha256=7x-ftEs4GF2Vy9JwOZKI_kiGQAst96LBEyXVePaTQyA 54
lightning_uq_box-0.2.0.dist-info/top_level.txt sha256=fDKCS7bPMHv5ubiVI-Z2Y86_Wa93DWYvpSvWFrUChZI 17
lightning_uq_box-0.2.0.dist-info/RECORD

top_level.txt

lightning_uq_box

entry_points.txt

uq-box = lightning_uq_box.main:main