langfair

View on PyPIReverse Dependencies (0)

0.1.2 langfair-0.1.2-py3-none-any.whl

Wheel Details

Project: langfair
Version: 0.1.2
Filename: langfair-0.1.2-py3-none-any.whl
Download: [link]
Size: 89126
MD5: 6c03e85dc97964e9cea91d3214441d4d
SHA256: 27c551931694f44ab7e3f993c14752bd4a680b9a72ad13d267827159416b2f5b
Uploaded: 2024-11-11 15:34:38 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: langfair
Version: 0.1.2
Summary: LangFair is a Python library for conducting use-case level LLM bias and fairness assessments
Author: Dylan Bouchard
Author-Email: dylan.bouchard[at]cvshealth.com
Maintainer: Dylan Bouchard
Maintainer-Email: dylan.bouchard[at]cvshealth.com
Home-Page: https://github.com/cvs-health/langfair
Project-Url: Documentation, https://cvs-health.github.io/langfair/latest/index.html
Project-Url: Repository, https://github.com/cvs-health/langfair
License: https://github.com/cvs-health/langfair/blob/main/LICENSE
Keywords: LLM,large language model,bias,fairness,Responsible AI
Classifier: License :: Other/Proprietary License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.9,<3.12
Requires-Dist: asyncio (<4.0.0,>=3.4.3)
Requires-Dist: detoxify (<0.6.0,>=0.5.2)
Requires-Dist: evaluate (<0.5.0,>=0.4.1)
Requires-Dist: langchain (<0.2.0,>=0.1.13)
Requires-Dist: nltk (>=3.8.2)
Requires-Dist: numpy (<2.0.0,>=1.26.4)
Requires-Dist: rouge-score (<0.2.0,>=0.1.2)
Requires-Dist: sacremoses (<0.2.0,>=0.1.1)
Requires-Dist: sentence-transformers (<3.0.0,>=2.7.0)
Requires-Dist: tiktoken (<0.7.0,>=0.6.0)
Requires-Dist: typing (<3.10)
Requires-Dist: vadersentiment (<4.0.0,>=3.3.2)
Description-Content-Type: text/markdown
[Description omitted; length: 10956 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.9.1
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
langfair/__init__.py sha256=gQc7r7g5Ml14ZajnknlkknShwf3p814tTd9vwqfdzfc 684
langfair/auto/__init__.py sha256=zNI7s20lVrYUF6CqdLebTRcUSrAW8TUhWKMSh28nn5M 668
langfair/auto/auto.py sha256=bUOi55OyshViXsejZZexumiIMvVmbrw3N5k2YUXXef4 16391
langfair/constants/__init__.py sha256=C81byTuwlZNN0yDITp-awmBXiwOvt_KFBvzVAPU71Qs 603
langfair/constants/cost_data.py sha256=uwGXg3RpX5gVRRVT8K07TBv6UIXwKxq6MXvA0V2_Nto 1890
langfair/constants/word_lists.py sha256=lR8TP3ssF3ohijBUXW1-J-7Dy3JRWIIOJFv6ej0w3wg 16860
langfair/generator/__init__.py sha256=Qvh9pmZ3vOG6fQ2qERdkaHU3tP0LgXJVWSNoGV_DAMk 804
langfair/generator/counterfactual.py sha256=Gmop_VT95vI_9pvVp9bSaH6J-LJ2OXGtmojKwmL6w48 20078
langfair/generator/generator.py sha256=S5xwYmFWPJNU1dtTXKiT3TLeNEbsIGGUKXG_qtYath0 16272
langfair/metrics/__init__.py sha256=C81byTuwlZNN0yDITp-awmBXiwOvt_KFBvzVAPU71Qs 603
langfair/metrics/classification/__init__.py sha256=QMbNjvLzBhDVA4aARS3fbRzTOkE7w5CAzyis06WmSiY 722
langfair/metrics/classification/classification.py sha256=QiSz26dAmonwcrPyLh0xugtuzrJBhdu3iWnTsRLBSHI 3329
langfair/metrics/classification/metrics/__init__.py sha256=xjAY26B7rXTrCbpNCC_WaUFhgCq7S0ecNX6MduC1wd8 1295
langfair/metrics/classification/metrics/baseclass/__init__.py sha256=79d_9RTlI_NfwHgKmFY69zVvGjBdA7Pn_0zU0MPAD7Y 703
langfair/metrics/classification/metrics/baseclass/metrics.py sha256=4ZMqrC4sjTH1CJ3TeLAyxtPSK9TmniH9GlXhOuDkrys 1651
langfair/metrics/classification/metrics/false_discovery.py sha256=yeKbwVGj5JRTB3CRi70OMSA6-x-pzKv3tFKOHl1BCq0 3168
langfair/metrics/classification/metrics/false_negative.py sha256=pSyGmbJHolfxq-_0xpjx2VLcNqvvmeMRRZgdRnjbsDg 3292
langfair/metrics/classification/metrics/false_omission.py sha256=cQC74nQ2-yowdLka5OTf26w0oK5OnenXJi94QxBIo1k 3305
langfair/metrics/classification/metrics/false_positive.py sha256=6rykKboR_VVzVUk79cu8skZTevsNEqce0KzUH3R2bwE 3300
langfair/metrics/classification/metrics/predicted_prevalence.py sha256=eduiBULEY1kOoVxyxRkhDKR714-CpEIfpLg0CrOP90o 2527
langfair/metrics/counterfactual/__init__.py sha256=_ZSTWAkfNz0k_Rdc7XN1qQHTUQLU-1O6t7vAo2Wir5o 722
langfair/metrics/counterfactual/counterfactual.py sha256=coEqZ9DsZ3TIw7JNk-7evcv8LBCABlw5KNydROTuisk 4961
langfair/metrics/counterfactual/metrics/__init__.py sha256=9SuPVMkSpDZZ-FRghZNdlM8J4_lujPVAdQT8YlQbvuU 995
langfair/metrics/counterfactual/metrics/baseclass/__init__.py sha256=KPqMP_EMhv4KST1sS9Eox-y5lFzpkDirpv-llocmtqA 703
langfair/metrics/counterfactual/metrics/baseclass/metrics.py sha256=E3sRCTCWAv6658Kf0nTXcxJcAg38eD5cZPlPfxl7ZsQ 1088
langfair/metrics/counterfactual/metrics/bleu.py sha256=_CY7yZy_mPXdBqqBbHPij2LCW1d0cdQ7tTS_28tGAjM 3298
langfair/metrics/counterfactual/metrics/cosine.py sha256=SFev4G-3-BlF_eYLtm7vndmjCuadssVvtmkXHH0EWCg 4457
langfair/metrics/counterfactual/metrics/rougel.py sha256=Tk6WXDASQr7BaQMsuzvyBMxkd1p2NAjiLApMULGZeL0 3254
langfair/metrics/counterfactual/metrics/sentimentbias.py sha256=WyypLwJal_0Bd_v8azs9xFmZeDoY8_Dlj83XVIHeV7w 6192
langfair/metrics/recommendation/__init__.py sha256=8jzxbcuRAKi8Qv5eUk_t2ijZl9EOx7w-CNbNfB9gFMU 722
langfair/metrics/recommendation/metrics/__init__.py sha256=NSOtCf_6d97t1crP480NeDMrSxCJSZpCrmYpHX_ieGQ 855
langfair/metrics/recommendation/metrics/baseclass/__init__.py sha256=jevQq3H9nYvXfD1kBdxOvr8u_wHbJxsp9wLpZbS1H2A 703
langfair/metrics/recommendation/metrics/baseclass/metrics.py sha256=IVecvaLuaP5PSWSZkCt0NAvzhdgoGFqdug8o9kEURB0 1045
langfair/metrics/recommendation/metrics/jaccard.py sha256=_KZ0Z4C2ovPkB1RzGGxGwsdJQkO22eZSA_PcY-y__JY 1485
langfair/metrics/recommendation/metrics/prag.py sha256=xH847dJ5noUadA4eOAKFtQhGmV1MEkhzre2tyV3Lvjk 1950
langfair/metrics/recommendation/metrics/serp.py sha256=4In25d2xS206_pSG4I5xFNITNkOC6ehhHT8SOTD24ts 1596
langfair/metrics/recommendation/recommendation.py sha256=VtJDjGzzvxoX8P2MvjQ8k8nWytC3Pk0xSt7ITgSAfnI 12373
langfair/metrics/stereotype/__init__.py sha256=9_53zQf3miL4m8owbEl9yte_g_rdAjgfX4YYp8NM8OY 706
langfair/metrics/stereotype/metrics/__init__.py sha256=XUHQfRMx8L1tYTqAhRTwbPfSka0pZddyk7ahKEZdgm8 961
langfair/metrics/stereotype/metrics/associations.py sha256=eh6MUGV_1JKFGiD6k99H9BqbpVuiARSlTBgWDR4VFTg 9349
langfair/metrics/stereotype/metrics/baseclass/__init__.py sha256=4AC1CJveKXoqckkz1_GJ8xG-vYzqOYtYUOkYEMeFivg 699
langfair/metrics/stereotype/metrics/baseclass/metrics.py sha256=MXkMgxIf77fMMGOG15WblaipUhsxzEUKZkNafn2WXB4 994
langfair/metrics/stereotype/metrics/classifier.py sha256=K7ZsxjeOgkvJ6bSNy2dg0HKAvxAsm-kxKMu1QF7E6m4 7935
langfair/metrics/stereotype/metrics/cooccurrence.py sha256=TPO2YVqv9aY3BZ4J1FA9WxcSbCxoSBLLkNRywAShEcw 11644
langfair/metrics/stereotype/stereotype.py sha256=QtmVxlbxhaPV7gC0suPcYStQBlv02NwlxLrmqGcKywE 4729
langfair/metrics/toxicity/__init__.py sha256=TiOap0PM9sb25DFGlSi7W-QHz0wbsdaRVD39r7JCwzY 803
langfair/metrics/toxicity/toxicity.py sha256=UiUs8OrpUE79kkW0_CcZxkOLdMKedxC2EU1H8e_dYOY 11241
langfair/metrics/utils/classifier_metrics/__init__.py sha256=1vV5cZ4wVo5rWcgcr-ZbXSN77pRjj4EwhaUgEQaIAd0 898
langfair/metrics/utils/classifier_metrics/baseclass/__init__.py sha256=RnJz271ggBR3w4lWSnPId-dA4kGKP4u-Avjrm3g_Pms 705
langfair/metrics/utils/classifier_metrics/baseclass/metrics.py sha256=bmpxrPOkbrAfAkQu3_bFG5QhxIXJlHUtgn4Ms_9r3Ng 2075
langfair/metrics/utils/classifier_metrics/expectedmaximum.py sha256=IPjoo4ECWIsqYEoKAvWHrU4okPSPqZdMFqF3zeYL0IU 1603
langfair/metrics/utils/classifier_metrics/fraction.py sha256=Wh_UEyLjsVZTQWw9XSb1LEqpmEf5y00lERxS84nAqh0 1596
langfair/metrics/utils/classifier_metrics/probability.py sha256=ul9JnlGc62x186O6zqJ5wp3BBCAlV8iCzDOn94sRnCo 1602
langfair-0.1.2.dist-info/LICENSE sha256=W6CZN3A2CFNAWZz0PjkNUAnmXzDuUfamdM1VI8vN_7Y 11569
langfair-0.1.2.dist-info/METADATA sha256=B0rWOGAZGXzxn8FTqgcwltrPCfLDWrgKMi0reKOTTR4 12663
langfair-0.1.2.dist-info/WHEEL sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs 88
langfair-0.1.2.dist-info/RECORD