kimm

View on PyPIReverse Dependencies (0)

0.2.5 kimm-0.2.5-py3-none-any.whl

Wheel Details

Project: kimm
Version: 0.2.5
Filename: kimm-0.2.5-py3-none-any.whl
Download: [link]
Size: 123387
MD5: 5958645501092871581da24aa3342a51
SHA256: a3cdb835e572937c3731376a2af035077ed025de699f70ef5d1e61436e2d9d47
Uploaded: 2024-10-20 13:53:18 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: kimm
Version: 0.2.5
Summary: A Keras model zoo with pretrained weights.
Author-Email: Hong-Yu Chiu <james77777778[at]gmail.com>
Maintainer-Email: Hong-Yu Chiu <james77777778[at]gmail.com>
Project-Url: Homepage, https://github.com/james77777778/keras-image-models
Project-Url: Documentation, https://github.com/james77777778/keras-image-models
Project-Url: Repository, https://github.com/james77777778/keras-image-models.git
Project-Url: Issues, https://github.com/james77777778/keras-image-models/issues
License: Apache License 2.0
Keywords: deep-learning,model-zoo,keras,jax,tensorflow,torch,imagenet,pretrained-weights,timm
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS
Classifier: Intended Audience :: Science/Research
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Software Development
Requires-Python: >=3.9
Requires-Dist: keras
Requires-Dist: opencv-python; extra == "examples"
Requires-Dist: matplotlib; extra == "examples"
Requires-Dist: tf2onnx; extra == "tests"
Requires-Dist: onnx; extra == "tests"
Requires-Dist: onnxoptimizer; extra == "tests"
Requires-Dist: onnxsim; extra == "tests"
Requires-Dist: isort; extra == "tests"
Requires-Dist: ruff; extra == "tests"
Requires-Dist: black; extra == "tests"
Requires-Dist: pytest; extra == "tests"
Requires-Dist: pytest-cov; extra == "tests"
Requires-Dist: coverage; extra == "tests"
Requires-Dist: pre-commit; extra == "tests"
Requires-Dist: namex; extra == "tests"
Provides-Extra: examples
Provides-Extra: tests
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 10136 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.2.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
kimm/__init__.py sha256=XTYjUAJG0QOxnd9t0oKHBe2Ft7YOBNngOTmHHHAlSwU 385
kimm/_src/kimm_export.py sha256=kV1D3lSv6pa1tO1kJm9dn5-J-vg9eXpLIuug8dMUm90 2867
kimm/_src/version.py sha256=G7kPb3sw9iycqnEpHOcfpea1mlrEusuJODBkKZ9ZMo4 130
kimm/_src/blocks/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kimm/_src/blocks/conv2d.py sha256=no6PtAm9omrJ0s4jy2TWo4HzpwPWe4Qrtqhbf-8zjA4 2452
kimm/_src/blocks/depthwise_separation.py sha256=2INUwGJaLPNcinhtOb9xJCDeJFITdRKff2Q-lLuIxBY 2263
kimm/_src/blocks/inverted_residual.py sha256=mAUyBxnbIUVOvSLHo1AAEaezRFC8LWNiL6ge6nA0CfY 2546
kimm/_src/blocks/squeeze_and_excitation.py sha256=cB0V9petO5cmVOVMCpLTuXw61c-mOujFFZe-gYU7edA 1598
kimm/_src/blocks/transformer.py sha256=66r7Zc_ZvT-VhFq_LD_FGYTK-rMwLfa3VtthAdduJrA 2527
kimm/_src/export/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kimm/_src/export/export_onnx.py sha256=98Zw3GC94IPyWeMubOSoJUXIWArweOpEmhyvziCmKlo 2709
kimm/_src/export/export_onnx_test.py sha256=W1lCwlm8h5aO8o87FAY9pGCFpHKP9V-7oZBxsCv2mHk 1237
kimm/_src/export/export_tflite.py sha256=V_i56iRaxha9qVJCTkAAOzx5rVMuQk_j4O3Az0vR7yI 3647
kimm/_src/export/export_tflite_test.py sha256=qNOexU5PPH46pqf0hdxulRdNh-A4iiTaPCl5IEbiAhU 2355
kimm/_src/layers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kimm/_src/layers/attention.py sha256=Y3LI4xYUylN-Vfzbfk6gEvgVKfaTE8vD66JOeOY1zOg 4144
kimm/_src/layers/attention_test.py sha256=u_OkLMSNRqy_g7XRNzl-x7F1NgvCzThhql-3yaTVDfI 1568
kimm/_src/layers/layer_scale.py sha256=Dy0k8gNd1B4kZA9L3S5fAnc97tO12B6IdyOMbex5b94 1692
kimm/_src/layers/layer_scale_test.py sha256=vFNLJ8VO_el1ObcrOiZpNTNWNU_oBEEW06aN-6Gswh4 616
kimm/_src/layers/learnable_affine.py sha256=F87ZsZEtshD8bBO983pnyjA_3ZSItPpCoJV6dWWqH8A 1709
kimm/_src/layers/learnable_affine_test.py sha256=jo8OdXHqklKNxeUoohMcbigXGFk1_U8jIv63t-b-FD8 663
kimm/_src/layers/position_embedding.py sha256=CTvMIaap8nKvniEsKM05UsJF6BvnM_yfmjOh58PDDjg 3266
kimm/_src/layers/position_embedding_test.py sha256=yWY2PZ0O8AA79iWAIFaIp16h-Z1WjpO_Fov9wDyfQsQ 1453
kimm/_src/layers/reparameterizable_conv2d.py sha256=NS6CbgapMQxdYzNY1oOQyXDf5zk50Se7iLtADuMFbps 13554
kimm/_src/layers/reparameterizable_conv2d_test.py sha256=qqNNg3wGHYcMSVp3D-b_wu05b4TQt0_rnMHSn_gJbvs 6377
kimm/_src/models/__init__.py sha256=cDvuuMMRg3-IBGurd5CPY6WU6l4_GPJY73sLVuVBGXs 796
kimm/_src/models/base_model.py sha256=AVqonHvmT9wILb8YUB2Q0fXXHxynt_2bxkXoDWVOFdY 13623
kimm/_src/models/convmixer.py sha256=yCoPcbDcWyqdzU7JDy5ZB7ZhtZPRQ__FesxiIL6yF4M 9204
kimm/_src/models/convnext.py sha256=lgSrjJlNE5jer0nmDtlXL5lAWwMQIihwuw-2QqOM7DI 15476
kimm/_src/models/densenet.py sha256=0GYqOAU5neIhkUyJOlp2JUyvgkRCQ5PlQiMxv8KeR_I 10600
kimm/_src/models/efficientnet.py sha256=9AJ8ViIHgnemDD7R3S-kn107e3Sdr1IdMIzncaL3G4M 32609
kimm/_src/models/ghostnet.py sha256=pQ2n_kasBYk5v4xwoj4t8sBDP4VuN6Ysz6zJaPfh1ho 16764
kimm/_src/models/ghostnet_v3.py sha256=h56BG2atbwUKBR6XiiUIR6jK7zM3nzcsT7GeFVNgBwk 16966
kimm/_src/models/hgnet.py sha256=e3D0qn24ZKgY7FUicNBbu2Hlx7TbL_GrCN0Trtf06vA 23804
kimm/_src/models/inception_next.py sha256=GHjg3GtUNZ8Nryt5hDHisL6etdCkBvOaDmy6yptEfDw 12839
kimm/_src/models/inception_v3.py sha256=iehydp-_XpRt3AxphSob2gbP3Ymzl10yYfOBnPj8kMc 14183
kimm/_src/models/mobilenet_v2.py sha256=s3PrOOJV8jNTRBoS6FZv_SAPKlnKHJCy5nrFnfv5BME 11154
kimm/_src/models/mobilenet_v3.py sha256=YIlG_jXAkXz3jcULMaP-y5q_lARPr66IAczbRTlBZnI 21877
kimm/_src/models/mobileone.py sha256=wS9rIetw5tNxA4PS90l7O6PUAfE916kq1SguqI95kOc 11838
kimm/_src/models/mobilevit.py sha256=EFHLmxyqmxzuJIKBCQ4c21wDSq6DrFPfV2H1wozDp2o 31814
kimm/_src/models/models_test.py sha256=79dq_kvvSzEJ8DFIKi-nu2azY0HCd66jnj7t7X8SHbs 24292
kimm/_src/models/regnet.py sha256=GYsN0cxqnEeKmeO3VjDoOCPAtyKyjvIU4P_301HNWr0 20542
kimm/_src/models/repvgg.py sha256=9lNxwO--9mxCCd1n8QrHDs2KYe3WXaHcFfHnZCyEeME 11924
kimm/_src/models/resnet.py sha256=k4OiubfOGEM1TiySQSUWG33eq5R5YK-Br3CTIe4iO3c 11141
kimm/_src/models/vgg.py sha256=yKIBgKDZw2Rh-c9JPfl3i41kvtXep9pFSOB_XWR4dtE 9618
kimm/_src/models/vision_transformer.py sha256=-SsQE5Sgi6xHelJg5PMxwMqqYC8wt9mkTzdVWcO3sME 13874
kimm/_src/models/xception.py sha256=NxY_9d2o4CW8eRFESbcF-lqpBLa9rxAhxYEmmUonkso 8502
kimm/_src/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kimm/_src/utils/make_divisble.py sha256=4ldDSnSLinSBBDJVFOKak8WfSIXBMpl4wL-wTvHQE3U 392
kimm/_src/utils/model_registry.py sha256=w7tIeYTSOEnzl7q3ahnkJFv-N3c1tRxVSJG5CmSMlZU 3991
kimm/_src/utils/model_registry_test.py sha256=wDxiJK1N_qA5upfHc3awYrMCpdymxRYvvckTxrk1JYo 3605
kimm/_src/utils/model_utils.py sha256=OO9RHKHXuINNcUfgP6Y5KzTGq-uWquq7qqfkBSATnhI 1443
kimm/_src/utils/model_utils_test.py sha256=Ia3Irm6E8CN1flH8xtFBBxbq_tYMhH71t0MW0P1feKc 1513
kimm/_src/utils/module_utils.py sha256=LEdf_2wYkO34xq6H9XpE2dsk19n_eltax0dXMiqCXPw 81
kimm/_src/utils/timm_utils.py sha256=fagjMDLETjQ5PffHNEJDoMk9HyuLn4sXwuo1jfyfOGc 6626
kimm/blocks/__init__.py sha256=K-c1UCXaix7Bsw64OS536F4nszdWLab6lq1J2eCO9bs 535
kimm/export/__init__.py sha256=L3iyuVeKHAVwsu2z0VmiWwJwtABbSzZYpx7aoq_-PMI 232
kimm/layers/__init__.py sha256=ry7vm-urBIVbegvmPQAmP0TKaGFUTYYWiPiGfnzJ-_g 429
kimm/models/__init__.py sha256=9b4XIyU7Xbb_WAH52D5ic3zFgngXUCLNJ2vF_A20V8o 8498
kimm/models/base_model/__init__.py sha256=wJBW-cskikXN8Y9A_xazl_dWc2b5Hc6Db8w9KPOdDv8 172
kimm/models/convmixer/__init__.py sha256=wiimTpZ-s6VNRX8X7fKDfn2eOZ6ByexIv4q69uoyP2k 289
kimm/models/convnext/__init__.py sha256=RgYqNRjq58wAo6iumtamXHJSfe1TrZ2jUJ0N90ld86g 586
kimm/models/densenet/__init__.py sha256=N4uGRdzDi4T7SEBXnS23K2GkRqOzuYVYCVmNfl5UEyM 322
kimm/models/efficientnet/__init__.py sha256=ZgVW_NxF6hLAmviQHtdQki4-IGHT82Y9GPHe8fIIc4Q 1607
kimm/models/ghostnet/__init__.py sha256=qQEhmoX1j4HVL5QNRfOZZrSt7YLgfE0MdoOcNqTpr-c 658
kimm/models/hgnet/__init__.py sha256=AJVCjMx5nUvXpI06eMRtoVuGYx-HH3Y1P2WAPr6ocUs 573
kimm/models/inception_next/__init__.py sha256=Nb1wlnsVFdg5YHUBrWdL6UvtHBkJi8BbHtWVWOEHvxw 309
kimm/models/inception_v3/__init__.py sha256=8oEUUeFi3o3nxIXtNC_isHnXUjPjU7I9hcwKLhbyJKc 176
kimm/models/mobilenet_v2/__init__.py sha256=Yr7jVU3PaDFwU-m5pJWZEj-j14QypqfYsxjy_K367Tw 412
kimm/models/mobilenet_v3/__init__.py sha256=zFqvDNzK3HT1bFmSsMNdsZXZwiD3B6NYM_AJQZ7h5YU 769
kimm/models/mobileone/__init__.py sha256=XnryBQS5SqYpBrTUDeU5_HB8kWguftF3_sYoxXjA_ps 326
kimm/models/mobilevit/__init__.py sha256=Asgbx8pVKzv-3nVxMRsY2A2Xphbf9V5Vg2aMs6RA7rs 660
kimm/models/regnet/__init__.py sha256=naATVLWCOG9G9lMSqW8QvaJcGVnn-d6Z_GHT00dfxC0 1250
kimm/models/repvgg/__init__.py sha256=uOGAbZn1XXwDn2J7yWtj62zCIcTQRbUgFG323XzA6fc 437
kimm/models/resnet/__init__.py sha256=KgnW6re54kwxx87Tf5QtDSX4VkSt0D7_3upIf79QfvY 349
kimm/models/vgg/__init__.py sha256=IMuGgGTYJv4Z8XHOqKEOmq1fsQ1pW-g03QK8l-B1NjU 278
kimm/models/vision_transformer/__init__.py sha256=ztVNuMHRnf12645bP_G3ZBJOH-tel33BvxXK2NLVlxM 702
kimm/models/xception/__init__.py sha256=V6CXFRT4R-EW3VKFVHi3BU2ke-MmXbuGGa94eQ76tpo 169
kimm/timm_utils/__init__.py sha256=o9XWNJ3pQSis5iEqIbR7-f3Mp4S1JzjJBIWIhfP2Lu4 358
kimm/utils/__init__.py sha256=0-ms6Dmq9nH3H4vQZmpXIJVx9D2jLWArzIx4aT5OJg0 243
kimm-0.2.5.dist-info/LICENSE sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ 11357
kimm-0.2.5.dist-info/METADATA sha256=tcmIIflKVvtbGv2Mtv4PVi9v6fgZE1qK4pqtPIfstnU 12153
kimm-0.2.5.dist-info/WHEEL sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA 91
kimm-0.2.5.dist-info/top_level.txt sha256=dSZeGGUVrnPJxAX4_Evk004w0A89bz69PPIetrNGQkg 5
kimm-0.2.5.dist-info/RECORD

top_level.txt

kimm