Reverse Dependencies of kfp
The following projects have a declared dependency on kfp:
- ai-pipeline-params — Functions to set and use the AI Pipeline Params
- auto-ml-openai-sdk — Async requests
- capctl — Command line tool for CAP
- codeflare-torchx — TorchX SDK and Components
- cogflow — COG modules
- data-prep-lab-kfp — Data Preparation Laboratory Library. KFP support
- data-prep-toolkit-flows — Data Preparation Toolkit Library for creation and execution of ttansformers flows
- data-prep-toolkit-kfp — Data Preparation Kit Library. KFP support
- data-prep-toolkit-kfp-v1 — Data Preparation Kit Library. KFP support
- data-prep-toolkit-kfp-v2 — Data Preparation Kit Library. KFP support
- datatonic-pipeline-components — KFP components developed at Datatonic
- digitalhub-runtime-kfp — KFP runtime for DHCore
- disdat-kfp — no summary
- dkube — Dkube SDK
- dkube-cicd-controller — CICD controller to automate component building, pipeline deployment to DKube.
- dlpipeline-api — A pip-installable pipeline service provider
- e2enetworks — E2E Networks Plugins
- easy-kubeflow — sdk help users for a better use of kubeflow
- easykubeflow — High level of kubeflow SDK
- elyra — Elyra provides AI Centric extensions to JupyterLab
- elyra-server — The elyra-server package provides common core libraries and functions that are required by Elyra's individual extensions. Note: Installing this package alone will not enable the use of Elyra. Please install the 'elyra' package instead. e.g. pip install elyra[all]
- fondant — Fondant - Large-scale data processing made easy and reusable
- gdmix-workflow — no summary
- google-cloud-aiplatform — Vertex AI API client library
- google-cloud-automlops — Build MLOps Pipelines in Minutes.
- google-cloud-pipeline-components — This SDK enables a set of First Party (Google owned) pipeline components that allow users to take their experience from Vertex AI SDK and other Google Cloud services and create a corresponding pipeline using KFP or Managed Pipelines.
- hoodat-vertex-components — Re-usable kfp components for hoodat
- hypermodel — Hyper Model provides functionality to support MLOps
- ibm-orchestration-pipelines — Python utilities for IBM Orchestration Pipelines
- ibm-watson-pipelines — Python utilities for IBM Watson Pipelines
- katonic — A modern, enterprise-ready MLOps Python SDK
- kedro-kubeflow — Kedro plugin with Kubeflow Pipelines support
- kedro-vertexai — Kedro plugin with GCP Vertex AI support
- kfn — Kubeflow notebook component builder
- kfp-command-line-tools — no summary
- kfp-decorators — no summary
- kfp-deployer — Deploy the KFP ML Pipeline from CLI.
- kfp-local — kfp local client runs pipelines on local host or in docker container
- kfp-notebook — Elyra provides AI Centric extensions to JupyterLab
- kfp-tekton — Tekton Compiler for Kubeflow Pipelines
- kfp-toolbox — The toolbox for kfp (Kubeflow Pipelines SDK)
- kfpdist — Use Kubeflow Pipeline to run distributed training jobs
- kfputils — Kubeflow pipeline utils
- kfpx — Extends the kfp package
- kfpxtend — High level of kubeflow SDK
- kfx — Extensions for kubeflow pipeline sdk.
- kiwi-booster — Python utility functions and classes for KiwiBot AI&Robotics team
- kubeflow-kale — Convert JupyterNotebooks to Kubeflow Pipelines deployments
- kubextract — cli framework generator for developing ML on kubeflow
- kung-fu-pipelines — Kubeflow pipelines made easy.
- m4-utils — Biblioteca com funções de uso comum em projetos de aprendizado de máquina e ciencia de dados.
- magnus-extensions — Extensions to Magnus core
- MAMMOth-commons — Component interfaces of the MAMMOth fairness toolkit.
- metaai-compiler — kfp component compiler with metaai
- ml-liv — no summary
- ml-orchestrator — kubeflow extension
- ml-pipeline-gen — A tool for generating end-to-end pipelines on GCP.
- ml6-kfp-components — A compilation of ML6 shared KFP components.
- mlcube-kubeflow — no summary
- mlrun-pipelines-kfp-v1-8 — MLRun Pipelines package for providing KFP 1.8 compatibility
- mlrun-pipelines-kfp-v1-8-experiment — MLRun Pipelines package for providing KFP 1.8 compatibility
- mlrun-pipelines-kfp-v2 — MLRun Pipelines package for providing KFP 2.* compatibility
- mlrun-pipelines-kfp-v2-experiment — MLRun Pipelines package for providing KFP 2.* compatibility
- mms-pip — A custom MMS Analytics module for Python3 by the Touchpoint Analytics & Data Discovery
- mrx-link-core — A simple AI/ML modeling tool, Link™ ensures a smoother flow and a better experience throughout the model development cycle.
- noteline-kf — Noteline Kubeflow Pipeline step for executing Notebook
- odh-elyra — Elyra provides AI Centric extensions to JupyterLab
- rexify — Streamlined Recommender System workflows with TensorFlow and Kubeflow
- sameproject — Notebooks to Pipelines, reproducible data science, oh my.
- simple-kfp-task — Generate a simple Kubeflow Pipeline task
- soopervisor — no summary
- tfx — TensorFlow Extended (TFX) is a TensorFlow-based general-purpose machine learning platform implemented at Google.
- tfx-addons — TFX Addons libraries
- torchx — TorchX SDK and Components
- torchx-applovin — TorchX SDK and Components
- torchx-nightly — TorchX SDK and Components
- unipipe — project_description
- vertex-deployer — Check, compile, upload, run, and schedule Kubeflow Pipelines on GCP Vertex AI in a standardized manner.
- vertexai — Please run pip install vertexai to use the Vertex SDK.
- wanna-ml — CLI tool for managing ML projects on Vertex AI
- wanna-ml-test — CLI tool for managing ML projects on Vertex AI
- waseda-tfx — TensorFlow Extended (TFX) is a TensorFlow-based general-purpose machine learning platform implemented at Google.
- wfp — A proxy application for kubeflow pipeline
- workflow-upa — A pip-installable UPA Workflow Definitions package
- zenml — ZenML: Write production-ready ML code.
- zenml-nightly — ZenML: Write production-ready ML code.
1