keras-mxnet

View on PyPIReverse Dependencies (0)

2.2.4.3 keras_mxnet-2.2.4.3-py2.py3-none-any.whl

Wheel Details

Project: keras-mxnet
Version: 2.2.4.3
Filename: keras_mxnet-2.2.4.3-py2.py3-none-any.whl
Download: [link]
Size: 373949
MD5: c1e4b185ac7f12f7b3703fe555d3773f
SHA256: 2afdef255d9b8e3748918b80a3c6f76e206641a7888010ee31cb551bfd1ef11f
Uploaded: 2020-07-02 18:36:20 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: keras-mxnet
Version: 2.2.4.3
Summary: Deep Learning for humans. Keras with highly scalable, high performance Apache MXNet backend support.
Author: Amazon Web Services
Home-Page: https://github.com/awslabs/keras-apache-mxnet
License: MIT
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Dist: numpy (>=1.9.1)
Requires-Dist: scipy (>=0.14)
Requires-Dist: six (>=1.9.0)
Requires-Dist: pyyaml
Requires-Dist: h5py
Requires-Dist: keras-applications (>=1.0.6)
Requires-Dist: keras-preprocessing (>=1.0.5)
Requires-Dist: pytest; extra == "tests"
Requires-Dist: pytest-pep8; extra == "tests"
Requires-Dist: pytest-xdist; extra == "tests"
Requires-Dist: pytest-cov; extra == "tests"
Requires-Dist: pytest-timeout; extra == "tests"
Requires-Dist: pandas; extra == "tests"
Requires-Dist: requests; extra == "tests"
Requires-Dist: pydot (>=1.2.4); extra == "visualize"
Provides-Extra: tests
Provides-Extra: visualize
[Description omitted; length: 823 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.33.4)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
benchmark/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
benchmark/scripts/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
benchmark/scripts/benchmark_resnet.py sha256=3MCvRQcODvuC5DF0oX0TMefnbam43CuxPTKhN-IbMZ4 12085
benchmark/scripts/data_generator.py sha256=8pRzzbQk9whxeavxNqg-HjXmcAS1TSoRUHiD5yWr4Vg 1251
benchmark/scripts/logging_metrics.py sha256=yH9UZPJ4peb5k_yF8g_qwgnH_YpkuJ-eAJSJ_UMKEyo 2887
benchmark/scripts/run_benchmark.py sha256=jluj6_FwlHyj2vh5n-WuqqVYLkku-ODxOoaU7ENro_M 2593
benchmark/scripts/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
benchmark/scripts/models/dataset_utils.py sha256=gBMU7q5tS3dsIUjtsdRFJc32JaIrL0y2YtJ_nHzlGx0 1352
benchmark/scripts/models/lstm_synthetic.py sha256=uf05Wd1tgxheLuRu1vf2o4wHEf8wGfxzK7hov9RH86c 4351
benchmark/scripts/models/lstm_text_generation.py sha256=qzU1e7yBQLjIpkUa4W8MMM1BIL031SfhLfEmRDFPUTA 7313
benchmark/scripts/models/model_config.py sha256=prfEH4q1JA9wGaABf7fC4yJSYzYtVj-AOMY-yPHvw9Y 867
benchmark/scripts/models/resnet.py sha256=-7MfC5nreLa4xmVJfiM3yq-NWsvApWeiYr9r-hS8n18 8709
benchmark/scripts/models/resnet50_benchmark.py sha256=PJCFT3sZSOaZMf1gF3oixtJvrvjkIByts97Wer9a1PA 3987
benchmark/scripts/models/resnet50_benchmark_tf_keras.py sha256=_Xf1dr8GOj3cJIfno_r1sXre5FgpUo0blBn3oM4yCdg 3360
benchmark/scripts/models/timehistory.py sha256=QQToHgyG8wJIX7RTPRG7NMc63KdPGwPLxF7Nr-waAy8 2391
docs/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
docs/autogen.py sha256=ol8xUT4EFRIN5El1BH23XKC6tSIZyBlLxNLugLAKFPw 21789
keras/__init__.py sha256=hilRFg60J0fg3v-qYHJQPBzyLiXxiAnySnLHt2CAd4M 1040
keras/activations.py sha256=0Wf5jKAM09GIZRtPIih-pGdmQhyum1oVAqx705NaodE 5650
keras/callbacks.py sha256=Kt-acE_HRmsJj_vfpmXMESwD3r4LKnsOy_NEFDW6SJY 55659
keras/constraints.py sha256=FvEBp9d0aJyqIhclHek5Rjvr0wrX1ujnoGBra14jB6Y 6181
keras/initializers.py sha256=YPCqYgVXMaTfcg0eMvJ0M0Tx6ni9vwtd-IVddW950Os 16486
keras/losses.py sha256=9jyyWqcQUYGcsvRnd94yU0zd-GKfxU9i-B7UDgzuHYI 4475
keras/metrics.py sha256=xah1OVa_2kVexXs2YRvCcXSS82B-JT-A231pbSYpQrA 3017
keras/models.py sha256=c8UulkAYhBtvlHzEBNpOLQkBmOB1mOF5JpQIGvArrTc 10409
keras/objectives.py sha256=ck4Iw_cAo6AbKrOPBLBLFnSiVmICvhAbm9Ax-FTyBPM 138
keras/optimizers.py sha256=4IT_H6anVrWKiB_mNqvReMid64mew1R1fBfSinnvIlM 30635
keras/regularizers.py sha256=qTfWpCkYV9t6U5EnV6vKJY3ZHuvcWkSXsVG5cCmFnK4 2142
keras/applications/__init__.py sha256=DpYF52z0_OLRT9ERTRdTMeHfU4RzFxJGxHNPP_FQfww 1168
keras/applications/densenet.py sha256=TwzPxdficQQ7y-LtCBwVWIYiDsl3fkL8yF6TI_kvnr4 762
keras/applications/imagenet_utils.py sha256=iUDjMW_pXwu-nIeqytMFRyP19x4p9qN4HzmAGIBFsx0 531
keras/applications/inception_resnet_v2.py sha256=ovpXBlIQZWXL2JXw-H5SjRxyYSkIzk0NM8sn_2TF5eE 598
keras/applications/inception_v3.py sha256=BITCPk38X0HMAPKtLEzJ1JWNBOk6cNs4QwOpLwffag4 558
keras/applications/mobilenet.py sha256=IxO0puuYb9cIr9hHJWUqg0-beLQOv9LpNilNBZ7a4EE 542
keras/applications/mobilenet_v2.py sha256=a9F4Kfee3Z-65u1DEc9qQrDCopl8xyrmdzX32FXAWP0 558
keras/applications/mobilenetv2.py sha256=qifGPXnhpUdJKu1gtMbuR5-1IZXD2odfYyEcUzPKtjw 64
keras/applications/nasnet.py sha256=ZWJGqHLE7VjWss2cguin-FtYhsFuTzmLnFDKwY_pR5E 644
keras/applications/resnet50.py sha256=CtH7ABKo9h8GwqiomkSXorK9I7x8uOCFsEtAtM0K_xg 536
keras/applications/vgg16.py sha256=0WVR3OQiicq1O1hlfXSabkMiBpNy-vSTAILYvS1mHR4 518
keras/applications/vgg19.py sha256=WrkmPzo48jZWJ8EnltHd0hHX7YETK9KKelYIkdOh6Mk 518
keras/applications/xception.py sha256=0DI2jqzltG0wNxXUqbE2b06TafX8utoCPdbAK0Sh2WU 536
keras/backend/__init__.py sha256=h1NLOMYt4MXRzKraGl7B3rTvr-TAzM125JaHhEnNfo4 4048
keras/backend/cntk_backend.py sha256=69ho9b07tErVt9-KJ3jG3Be4jcTYHd2f53GdlthTOh8 83209
keras/backend/common.py sha256=WM0E6e2dJKicvurKralOpr_MsOJTjjnZWwLN1gWTf28 5236
keras/backend/mxnet_backend.py sha256=UAErHbR6RMzcvjxEdk8hHK3hV3yNU4HH_80orG4wyGU 210819
keras/backend/tensorflow_backend.py sha256=1qNtmJZiVuEMKJXu-KH5Mi8aHl4XYj1_t-TxWjFhPB0 142831
keras/backend/theano_backend.py sha256=jEmVQrUrQ7tmEXrMHv1lnqdoQDgyQ8X8YL_CbioaQqg 98598
keras/datasets/__init__.py sha256=5TieabOPRk6yBgnZ03YbuoOO5jT9YD-8HLJZRV-ZRBQ 203
keras/datasets/boston_housing.py sha256=M7zDjTM-yVrl1Mka1m92VJNPKC6gVmOeyBCv-3u3LGY 1422
keras/datasets/cifar.py sha256=aoDqdOw_X9r6zAu_YID7SM-8KBP_4WqcWujkRFgrnVM 966
keras/datasets/cifar10.py sha256=gecmucbzXfWqcqZrghZQl1hZMo_9iN5m6BSKW-NyTEE 1346
keras/datasets/cifar100.py sha256=vA8iloYiivHij_8AME85suHsoIoIeb2VgnipwgvcJxU 1391
keras/datasets/fashion_mnist.py sha256=pZhqNpPfpXhe637ea2V4csEsWy0l4lQMKr1bzWrivz0 1460
keras/datasets/imdb.py sha256=Fkdx4YjZNEsYGI1ga92EDEZpekthUp-3IZV4KaP9g4c 4457
keras/datasets/mnist.py sha256=x49H6o5jVrMsB08CUT64dh13uBZhpyyZKekbbQCs_TA 837
keras/datasets/reuters.py sha256=S_4XoI3fUbanMqV5dZxkZQRB4IvG7wKU_lSMNTu7cCU 3926
keras/engine/__init__.py sha256=Iy9Nu00d3yg0AnKfeDCFqZmw2dn0YqtJRWU528mKpIk 279
keras/engine/base_layer.py sha256=wwwwR2G0_D9W0dnIwLxGbD2PxiHU4Slg09pHksm5zN4 54361
keras/engine/input_layer.py sha256=odPLcO6OJfrcg_wr1ynP2vijKgiHBgtopB3VVxRw-Gk 7502
keras/engine/network.py sha256=v18GYf8sZEdL6n5T04XDYxuQ1nZOj2qOGL62gvI0pg8 60143
keras/engine/saving.py sha256=XyP5Tt2dsbWOzFWHalVU5Kj98NAAGZCNXciuPOJJiGU 50529
keras/engine/sequential.py sha256=zrQw0CHmT2O_kqzSvhGaoIXSc2jfa3LsPIemrtgBzAs 11464
keras/engine/topology.py sha256=C00a8ksSlNh8rI-YoenqR-MnwY1wDx2pbmEczzk7Wvo 217
keras/engine/training.py sha256=2Abp95cFnlsbgCpST9pqtEdkqmymSFEoJx2EOt_zk_Q 74856
keras/engine/training_arrays.py sha256=-dbXR9SuwOfnPZx2KEXP30r3u2r3dyamRl2LzCdY86Y 16720
keras/engine/training_generator.py sha256=Vbf6ihEVF9dHwoyDElxsphcRJLoedaR2f9d3E3ZlxNc 18678
keras/engine/training_utils.py sha256=92MynJwnHyxLNmVONp_-dRI_x08HXMcPIR8hhUdtjDU 24671
keras/layers/__init__.py sha256=6y_sAizSbcLnDh7sAtmytUe2YOLgcsU_bZqmEfv_IFs 1637
keras/layers/advanced_activations.py sha256=KLA8TSuy8l4sDMiLq5zjz3W6QXaTePnqmRrzf9yD9js 10863
keras/layers/convolutional.py sha256=uU2MIRj2ho1K_X7qzwLBPCrZVHgFJseM-Ct8lpVyFPo 116463
keras/layers/convolutional_recurrent.py sha256=3LK7NGqvVk1BM3LhoSH_mdLJ_HjAk_xMflWLKuXUgrs 49211
keras/layers/core.py sha256=9j_p0GBf3CYk8zjq3iRQqbHcx_lrD660Dk9V8BnUupI 36779
keras/layers/cudnn_recurrent.py sha256=ruhL_QKAoyIZmvJajTlZu97ZGulipvcY1AFGpPgscU8 23084
keras/layers/embeddings.py sha256=eBmJMKBTN7RTWsE2ObUpIoHSP0L6OZfmhEbCcs-2nvk 7643
keras/layers/local.py sha256=plVoziC-GPLtBCEk4bzqD61_RN_ZMHMvNsXHAnLnHns 18439
keras/layers/merge.py sha256=TBCNYszqqdrWosHVwn4zi1UyOxr5tSWuLmV4lv9Jjbk 24038
keras/layers/noise.py sha256=YoF6lGHDEASeueX1Q4sr4W9n8xkYlSXXIDAvl7qb6ls 6143
keras/layers/normalization.py sha256=LYHA__eOJWg-fzzV-3vv6JsgcPjGjUteemIxOCeLnow 12322
keras/layers/pooling.py sha256=eQbVk8rkCaTehlY7mnf9vMoh2mJp-dKW8LhGVNuc4JQ 31570
keras/layers/recurrent.py sha256=bHIPZqBU0T9VzChqog411WqEM5A3khJ45_W0dHHJrxk 103055
keras/layers/wrappers.py sha256=U94adESlmje7JiXlNcFk9S7x2FagJNma6etiXRD5GnQ 25795
keras/legacy/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
keras/legacy/interfaces.py sha256=QpVHd8UMJe5Nx2TXYfVvimjebjxQOau_ahWSk7D0hBU 29754
keras/legacy/layers.py sha256=zjx1iZylJmYbz2qGVZ_oTDj9Aj68-pEIVS4q0BAAaYE 36673
keras/preprocessing/__init__.py sha256=nFWWdMV44maGZKM1DP-1j38tdBRl3OhcRcFZtCspyrQ 317
keras/preprocessing/image.py sha256=HgURLW7QeBsLLhVepmJfmg-jr_hYC_6wjKWH0SDsyAY 19283
keras/preprocessing/sequence.py sha256=z00oM4w1S4_FJEOU3G6lG5HwwjrK5EfVspZCu_ZaQtE 3112
keras/preprocessing/text.py sha256=gns8sm2ZjeoFiBDrwzgLlBA4pqWdTESaAeEcP_E91Ao 331
keras/utils/__init__.py sha256=Go6GYbe719vAU2FsmKj8KN3fRgjl5OC5bs1ouKRRQho 1002
keras/utils/conv_utils.py sha256=OdsRmzRekgnbs0HkqcoLg1MAva--YCd93GeMBDHU61M 6176
keras/utils/data_utils.py sha256=0jX7_MNzTcLrJanEmKzA8TzXs6wjFRMTk-aSY_dT46E 24612
keras/utils/generic_utils.py sha256=GN9jKNiX3eztCiFUQWM-p-OXWREPzB_SXduyQ-v8xxc 20302
keras/utils/io_utils.py sha256=9XCET-lhq4UPODXJTw38F3kZImgX-m_IeXq4r5Cyris 11606
keras/utils/layer_utils.py sha256=h1i0zliyqrhsUsRnwEnE_yznXw6uGI25MpM2pau57Us 10707
keras/utils/multi_gpu_utils.py sha256=Rjn-IY1uNwGvYDSJAc_OU_kc7YmK3Mm59BCLDEcUowo 10030
keras/utils/np_utils.py sha256=FzjW5Qs3yJSW8wmiYdF0H2MgL9n44IXbgL_4FvoGzfI 4126
keras/utils/test_utils.py sha256=apMKohWRhTC7HX-IOQ8BQBRvaM06X8-tKjPQbhx-qRw 4810
keras/utils/vis_utils.py sha256=w3KTBHFAOjUBDRyyWN0ahmalMrZj-sYpPEw53gos7Pk 4762
keras/wrappers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
keras/wrappers/scikit_learn.py sha256=a4mM8LeVIKcti-yX_T13oUcr8NbCZecabX4J5pDfMCI 13161
keras_mxnet-2.2.4.3.dist-info/LICENSE sha256=qTP70sSyFNED5hI5j7LRXjNlNNFXNM-vivT0P7epAEg 1721
keras_mxnet-2.2.4.3.dist-info/METADATA sha256=_JeBX4hACUaHM9SsjDwO_W2Dqw23ZC7bzghi4ynwu4o 2328
keras_mxnet-2.2.4.3.dist-info/WHEEL sha256=h_aVn5OB2IERUjMbi2pucmR_zzWJtk303YXvhh60NJ8 110
keras_mxnet-2.2.4.3.dist-info/top_level.txt sha256=6uxuhiIP107nrmMVaz80w-tDHXQZEIo8RuH-qh8cESw 21
keras_mxnet-2.2.4.3.dist-info/RECORD

top_level.txt

benchmark
docs
keras