kecam

View on PyPIReverse Dependencies (0)

1.4.1 kecam-1.4.1-py3-none-any.whl

Wheel Details

Project: kecam
Version: 1.4.1
Filename: kecam-1.4.1-py3-none-any.whl
Download: [link]
Size: 796025
MD5: 314d623cba025fee8614a87666cf7f98
SHA256: fd1e5fb8352e4a100c2f4a8f141aacf294a275de4d161e6ae225a1e6c6c64d13
Uploaded: 2024-04-10 05:31:12 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: kecam
Version: 1.4.1
Summary: Tensorflow keras computer vision attention models. Alias kecam. https://github.com/leondgarse/keras_cv_attention_models
Author: Leondgarse
Author-Email: leondgarse[at]gmail.com
Home-Page: https://github.com/leondgarse/keras_cv_attention_models
License: Apache 2.0
Keywords: tensorflow keras cv attention pretrained models kecam
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.6
Requires-Dist: h5py
Requires-Dist: pillow
Requires-Dist: tqdm
Requires-Dist: ftfy
Requires-Dist: regex
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 186906 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.43.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
kecam/__init__.py sha256=OX5b6JDaf7RQ0GBEVMJ4trlTYglykJSB_V4gd6DQz2Y 251
keras_cv_attention_models/__init__.py sha256=I4oVpwbnYiQd0QgzCWu1s35p-F-MB_ul6FGkGSFr5E4 4417
keras_cv_attention_models/backend.py sha256=HDa5nZDd7tIZZ44Uv5kzA1AzxO_HuH2uwmNACGLDU-c 7468
keras_cv_attention_models/common_layers.py sha256=qiwZJlW1t1jQh8k0YV_rJGWtBknFGJATNR9lCVA9j3I 37169
keras_cv_attention_models/download_and_load.py sha256=bzfvRJPhqcAY_gGVlNrtyD5XvrRaW68HqdoZgfBdo9E 32095
keras_cv_attention_models/keras_core_functional.py sha256=uNELL5Btir6JZ1ZvSPYgj32aTd61wRdrSgAozVWh-Ys 3288
keras_cv_attention_models/models.py sha256=zgo8j_lp48yyKN67zS45hOBK5gt0xsmyPwqEaNagI9E 3668
keras_cv_attention_models/plot_func.py sha256=gDwdWMU0WQ_H8kP6_L4DieT0UGd5RBkYBrCyl1Aw7_U 20348
keras_cv_attention_models/test_images.py sha256=DJiBfOYu-yw-gYY9iS7x0E2r4skkePXbh70Hd4eq9Og 419557
keras_cv_attention_models/tf_functional.py sha256=aaK6pYYlPOSkOOSws_L5i-PR0bMO_GWCC16pxoh9D-U 598
keras_cv_attention_models/version.py sha256=BqOI5y46o1G1RWC9bF1DPL-YM68lGYPmZt1pn6FZFZs 22
keras_cv_attention_models/aotnet/__init__.py sha256=Z2_uGfzBOXPDbRD-Ujrsa7fPBBo1O_8BqpyGqc0SrcA 7296
keras_cv_attention_models/aotnet/aotnet.py sha256=GTm4WSqg9wNldhnCCM_ECsdfSxKOAegXbx-NCeVA4n8 22272
keras_cv_attention_models/attention_layers/__init__.py sha256=fx3lO1zMd8nD6V34pahjKMPSh7E3uZXKyr9zuApT2Kg 11307
keras_cv_attention_models/beit/__init__.py sha256=kL8o44ex27uW7b3N54d9lZ_iep_HXbGzpGZR0galQuY 19158
keras_cv_attention_models/beit/beit.py sha256=aN_WC_dnKNUI10U01MSt8AJyfSBnWsBJUwcAKqaXjjE 40039
keras_cv_attention_models/beit/dinov2.py sha256=cXpEIzaNqUKfOX3-BrW-oBgt1RjXgWbnsDx3qfj3xpg 1758
keras_cv_attention_models/beit/eva.py sha256=4Z1dp0txBhqI8w29WvkUnw_CD-KZhTmwbJDeymuryCc 1117
keras_cv_attention_models/beit/eva02.py sha256=6IS15CfGmqQjEsmXD0Kv37BzD1cGcq6LpWxx7TrDsQs 1875
keras_cv_attention_models/beit/flexivit.py sha256=00DGjNC3Hl3W6pvcjH1PX1-qi6m_5tde3I63lhXkY4o 1512
keras_cv_attention_models/beit/meta_transformer.py sha256=86pSXN6VeNzmC33LcE389YOv7nMEw944xqoYFneeyH4 1470
keras_cv_attention_models/beit/vit.py sha256=xuoWRlenNZb8T7gEN8c7f4ykN-1ggcavf9ptqBPfvd0 2343
keras_cv_attention_models/botnet/__init__.py sha256=RDTBKZbDkvqU_2aRGrlTcTv4JP_OlN3QopLQ069tLZs 5531
keras_cv_attention_models/botnet/botnet.py sha256=GRycTVV_HKl6-kZn1ezg-GdWg77iwB-SyGbvGOP1g44 13201
keras_cv_attention_models/caformer/__init__.py sha256=QvdcnUzzz0qz9J0AdI7QzMCb8G8h9fE3dsfd07WygMI 5769
keras_cv_attention_models/caformer/caformer.py sha256=nXs3CTPwtZG8ISMd4qzUhkXtRK8ZNNxGI25DzKirAf4 10822
keras_cv_attention_models/clip/__init__.py sha256=wNqpQgp3PMOGBEZK22S6LDBr1jb7f8y08eD59MYqwPs 829
keras_cv_attention_models/clip/models.py sha256=_g6nS7HzWkJbLCohd_wYGRHZoCzZY3IJGLAQmr8AOQo 8390
keras_cv_attention_models/clip/tf_data.py sha256=ffD-zhTDlysFKGlHPRDbCxrXuxdGRSLLPX21QAhIo0A 2115
keras_cv_attention_models/clip/tokenizer.py sha256=kY2MQ5Vzz4Rtyampnl0B__dsmPQimmeC-_8nNEBq04Q 15814
keras_cv_attention_models/clip/torch_data.py sha256=Lc8IQSy3x4-MyShYNyrPMka1I3RKJOBNp3P0gBd2fAo 3518
keras_cv_attention_models/cmt/__init__.py sha256=9-XMrKbbFQx5nXsbMkR3b64k97_We-3aicDkA4PoyaM 6493
keras_cv_attention_models/cmt/cmt.py sha256=BXiEzN4T0EK7jJBE5omh1W2oUKtXPHhw-K4ehkWUYrI 14985
keras_cv_attention_models/coat/__init__.py sha256=k-jFXue54KlKdIys9wvvoixSZbBVofjvphUuQVnGxWI 4601
keras_cv_attention_models/coat/coat.py sha256=Qmop-jKdcDacqc_fEm07Zx4v3bjdOPnfYh5leVmwTrw 17242
keras_cv_attention_models/coatnet/__init__.py sha256=tAdUN1_3GWGTH45Kdbl_fpbgqVHZRGP7mryXs_gRPBg 7484
keras_cv_attention_models/coatnet/coatnet.py sha256=GA4AhviC6K3Bc8qSYcxQE4HqeDlNQNpCW3D4jW4Hzik 14561
keras_cv_attention_models/coco/__init__.py sha256=u6lWVo26vqrUgwbadTXBngXiZqYrexOFxTvVEsJFh1Q 2489
keras_cv_attention_models/coco/anchors_func.py sha256=VgbRcG2aP0EwAXaQyucWjX493w6eL38MS_IpPY9lo9k 37979
keras_cv_attention_models/coco/eval_func.py sha256=Rm3YtVKFG8E2jWni5rPvWUzv0w4WBPN6opIVGtNu3pQ 30908
keras_cv_attention_models/coco/info.py sha256=08EUSNnjPb-V1jle7v1pOghGsdWpl3kCECQJW-qNWu8 1173
keras_cv_attention_models/coco/tf_data.py sha256=5Qxd-q5rqGIFsIhZqgJxk9D_H7nvOQ9fRtqRUMpSZ3A 30960
keras_cv_attention_models/coco/tf_losses.py sha256=Juzvd7-BQjctoQKgew2oeQ0mDxP81_7ApKzooZUvc-k 31802
keras_cv_attention_models/coco/torch_data.py sha256=mPgYArcXK3doWYX277U8sQkhot0U2gGvqowQOBqCC64 15930
keras_cv_attention_models/coco/torch_losses.py sha256=zQiG6Ty222ug5paN5Ch27L1sAFei7aLZVhqT-7LAMFo 19753
keras_cv_attention_models/convnext/__init__.py sha256=7MUxOxIN9CzxGIbYvjU8D-RGTtuujVvyxvPMToOVSqY 6961
keras_cv_attention_models/convnext/convnext.py sha256=IV9SXS9HWtvxe-aqpR57zf1pLSehAVgVDXIWIVHbRDI 11026
keras_cv_attention_models/convnext/convnext_v2.py sha256=cnUSEWgTp5PD39_JUdM3D48DrKqRr5W4708rKC6ouCY 3151
keras_cv_attention_models/cotnet/__init__.py sha256=TuxpaD-Z1mnZzWBuntpD2AtStkSzOR3-kAA0REXPlG4 4804
keras_cv_attention_models/cotnet/cotnet.py sha256=vJTvoYsn6NUTvgv-1dy-BmpkTKHlijSE713awTOxWWw 10269
keras_cv_attention_models/cspnext/__init__.py sha256=M8g_1NP-FEc7N0uBc3n_Yi945MRQtaotla1ijrKq3FA 2045
keras_cv_attention_models/cspnext/cspnext.py sha256=nA5uVR-8FUWvNHsh0n_iLEQBGujy1zfhbcIlvxIl7SE 7972
keras_cv_attention_models/davit/__init__.py sha256=9yuz8GZqdyqKN4x2oUmYsdGumlWGnEjYvHX5Tz9iWkU 5364
keras_cv_attention_models/davit/davit.py sha256=XBNAbNfQRbIJJ7kGDES6hLmeLB_E7O_3nOZ82ByeP5g 17278
keras_cv_attention_models/edgenext/__init__.py sha256=sBJkXSAr0-532RFH2-Bz4GZlik0YSApwTjco8THPoSI 5348
keras_cv_attention_models/edgenext/edgenext.py sha256=NLpBy-5fctAqbfMYZVKuRw1KODNpkQznozHXKKn3WCI 14175
keras_cv_attention_models/efficientdet/__init__.py sha256=ycGK0Sg3VJK-0TaJempHsAnfqfk5tSDqbzHZlvEqQa4 6631
keras_cv_attention_models/efficientdet/efficientdet.py sha256=DW3T0QjVpqsnIVZ7JL7iWSiudeeRQnrwm-OUZkZsSsk 24283
keras_cv_attention_models/efficientformer/__init__.py sha256=9RdkrcfZvAx3OQzpnJsQkjUqsJV3s8BNoU_Fyg6AN1Q 4674
keras_cv_attention_models/efficientformer/efficientformer.py sha256=9OJoKEwPStZ6GSq_dEycaa2ZvLooGeBL3kiUWqexeXQ 8408
keras_cv_attention_models/efficientformer/efficientformer_v2.py sha256=Gjrrtib0cRtC4MSjXVEgQTaIPLblwAH0De945Tz147U 15435
keras_cv_attention_models/efficientnet/__init__.py sha256=yq_o0bXpUwZPEJu_11EI9kL4d9RGvH8vTcesKwpyP2U 14861
keras_cv_attention_models/efficientnet/convert_effnetv2_model.py sha256=FEcomW-OOkmH_k4T8cww3CMVaDGd0InsC4Hp5PUKXqk 33979
keras_cv_attention_models/efficientnet/efficientnet_edgetpu.py sha256=pDNTaS59fxOjl44FiosD5rVFtDutLofurWGukou4jI4 2890
keras_cv_attention_models/efficientnet/efficientnet_v1.py sha256=ScQhi0t3hCrEC7wDY4sSz6PdIDYg48kxV-YhThU3RR0 8846
keras_cv_attention_models/efficientnet/efficientnet_v2.py sha256=ilGGaJgL09krD1vzfIWYLc5ySHZb6g4STo1Kxf4AIZk 18505
keras_cv_attention_models/efficientvit/__init__.py sha256=hR79u9Y5WiY1pc_DaXRFi_nQrK6LpMG-f3UzK1DDxyk 8885
keras_cv_attention_models/efficientvit/efficientvit_b.py sha256=GQrUFsKHcvNh3OymysJ19GA5R4F8UjV_9t5Z5dZWdDQ 13529
keras_cv_attention_models/efficientvit/efficientvit_m.py sha256=qmU6XpvJ6SqxlFsdu0E-vRxs1zgPl4bxQzVVfXUK-ro 13574
keras_cv_attention_models/fasternet/__init__.py sha256=UjoQFYDgOFL8rKZi1IszrSd02vxEAMEs5G4UAxls-18 2974
keras_cv_attention_models/fasternet/fasternet.py sha256=PingzXTIz5jbgmmFAGtSyqJNqFiwaiNV6K1WlzpYL0Q 6531
keras_cv_attention_models/fastervit/__init__.py sha256=iNOVoLGO_CVUY3PFjpvtrLmi17mqHdZFk4rpfimi-tY 3408
keras_cv_attention_models/fastervit/fastervit.py sha256=7WEP4hoYXWFEXzJZelylu3F0ZVyAIZaLoZAT46Lcy00 16412
keras_cv_attention_models/fastvit/__init__.py sha256=aW3II7QrbiPpiyDWlzZM_Rdy-A5eTV4jq2Ga4LsKHxs 3863
keras_cv_attention_models/fastvit/fastvit.py sha256=HG_MbL8-0MYZ8chu-s5XyM3y1MSGrVKKMghcOOw4md4 13383
keras_cv_attention_models/gcvit/__init__.py sha256=neUPcQ52SpYZkKZusyjlxYbXb2Vk26lzpSN1KA3a66U 3192
keras_cv_attention_models/gcvit/gcvit.py sha256=dwakKmFm9tWtUFxtP1hMWhz68dBl1oUfdl2LdvWX-bU 10796
keras_cv_attention_models/ghostnet/__init__.py sha256=7KP2yhkYTb9yY5Ux61ZU8FVudxCIclQk4EJ1_4DZ9MM 3617
keras_cv_attention_models/ghostnet/ghostnet.py sha256=eOprCrbZnX46v097qZ-QLlPdQ_-qk47Qf307PDcwcz8 1803
keras_cv_attention_models/ghostnet/ghostnet_v2.py sha256=hyYoOvgTvg0NoNP1CxzgmTaoi0G-pSbHa1XR31S0wDE 8712
keras_cv_attention_models/gpt2/__init__.py sha256=hiyCNw0ybs25LJOyIxFLemjkpmZeWZ_cZh1D8za90d4 2098
keras_cv_attention_models/gpt2/gpt2.py sha256=rob5uHO66yV9lN3c6Pxrx4VI07WxS9mVKpVNTjw2xss 14275
keras_cv_attention_models/gpvit/__init__.py sha256=pAvxM9kfBex6nWOO7CoxAxR1kKJY2EqD1c_9g8niw8A 3028
keras_cv_attention_models/gpvit/gpvit.py sha256=d-cFeJpPaWpZPs5J0atIWxZjfdai2NpZG1nhn0jujFg 14091
keras_cv_attention_models/halonet/__init__.py sha256=-T7EgTy1Jm4ioNHbuzrmT_3bRzFbi1cT2YxbvSksp8E 5278
keras_cv_attention_models/halonet/halonet.py sha256=I_tg9Taxzt4D46IhozAo0cW3nrWc_uEYYDK8XSGc-8U 18874
keras_cv_attention_models/hiera/__init__.py sha256=MywhLOg45pHF37kdCvAXwvCl5VgFuklwNUMIXJZoQSU 2794
keras_cv_attention_models/hiera/hiera.py sha256=Sk3zZaS3WFrxi3i3eu5QTNfoFqMtXiQtFp8e6Pvp0yU 11153
keras_cv_attention_models/hornet/__init__.py sha256=o5qqy_HzZvo4WBnF3n9VLkgWnRByi1VzsKucx4_YSPg 6773
keras_cv_attention_models/hornet/hornet.py sha256=971-WZiLMnthPcuzcnlgcg7m5sjM6Sy9_j-XoUELYj0 11412
keras_cv_attention_models/iformer/__init__.py sha256=asF3AQhn_N_fklSD5N3brQIW65m3AmmsRg-VDm9MncY 2904
keras_cv_attention_models/iformer/iformer.py sha256=1F8Dvl2WlgYv-4xlQvsQ2T5yfB9AlIpdvXiXdTE8ZRo 10480
keras_cv_attention_models/imagenet/__init__.py sha256=3fAcY9h8Cmg4LtdYjShMr2vVYsFEJ3Q697Qsjy8R29o 5837
keras_cv_attention_models/imagenet/augment.py sha256=T31tC8ZibS5cj-cdjKa0xVY6Njy_QhB4LhsISDJ6jyw 47911
keras_cv_attention_models/imagenet/callbacks.py sha256=1LB6f0XzoudtKNmvGXF88wqp0nxiAAScK1LUZwjJHIM 24060
keras_cv_attention_models/imagenet/data.py sha256=ZUMAs0yYRdGejf5NUvPp6IdV8V3CSxt26PZAVC3uEZ4 32596
keras_cv_attention_models/imagenet/eval_func.py sha256=dt0IVnfU5NYZ2xSLb_nlACXXf-iieQjB-fjtzBwwEvM 13733
keras_cv_attention_models/imagenet/losses.py sha256=69gLsGY0Nv0_XxddRKHoIiel1NgcLTFBhU_Kmefr4G0 3447
keras_cv_attention_models/imagenet/metrics.py sha256=c-6E4XNhRRnjJo8l5V28xMinOI9S_eNymXjFCw0z-R0 577
keras_cv_attention_models/imagenet/tensorrt_engine.py sha256=y8CmwgvsAca1fbzXmvfY6SEMEzelVF69eKgaViaCMWs 11367
keras_cv_attention_models/imagenet/token_label.py sha256=eTZAKSM5mtcZ6fXtq15P05TkhxWIwuu3JSg5PBrnCv0 6002
keras_cv_attention_models/imagenet/train_func.py sha256=idq0RoBLwqmQcPm0j-U_7rZ0pjd3PCAjjEsF6369hRo 15814
keras_cv_attention_models/inceptionnext/__init__.py sha256=NZ3-Ng8WhsUN18Z8nPO2Ejq8rRii3H8RizotfT4Gw6I 2560
keras_cv_attention_models/inceptionnext/inceptionnext.py sha256=WOCgyQPupZS2fpDMvvfiyu8d0RIPEd9IpbI2n5cGvYk 6133
keras_cv_attention_models/levit/__init__.py sha256=SGbJ156gQQn_8peYoGwbKUIaqb58l1UTxc_Y8WVDdiU 8185
keras_cv_attention_models/levit/levit.py sha256=YCtWP1YWGpIxbWAx7cgB4rYCQelrovBwhsJJBQyhxnk 18042
keras_cv_attention_models/llama2/__init__.py sha256=n0XEdVypoS1OTO4hrzBFDKLBQXzKRnHyBSOTia5dRtM 2492
keras_cv_attention_models/llama2/llama2.py sha256=Urfd-VM50s5dhwcLzY0Lx_PEQedN4qYg8kk5mYPi6Xg 11111
keras_cv_attention_models/maxvit/__init__.py sha256=LV2F31QZp3320uON9tiW6UV3FXDCtvS4WK6SskkTzCI 4768
keras_cv_attention_models/maxvit/maxvit.py sha256=oES8V7mv73zL0fV-MpiVL7-sihx8YYgbBM6Q4z2cc60 11483
keras_cv_attention_models/mlp_family/__init__.py sha256=sOgFy-iLocg5os8NvW5XbqCAO5G-YHRf3TUFWWYBXHw 20334
keras_cv_attention_models/mlp_family/gated_mlp.py sha256=dt5_dUwg0LpXjF-CR6Wff_Ld4zwhUawts8hXrejhjkY 6268
keras_cv_attention_models/mlp_family/mlp_mixer.py sha256=Lva6UCehyUB7sLRlM2xWG6kZnIkHuxE1fo26joMqa0k 9796
keras_cv_attention_models/mlp_family/res_mlp.py sha256=ZCdmfx25365KSArdgSW8dg8EBu45a8pgHi3tE7JGwkI 9026
keras_cv_attention_models/mlp_family/wave_mlp.py sha256=4NPm9A_Fn-vDVC07LgdKKO5OGoEzkBJ8xNekDSWIEZQ 10113
keras_cv_attention_models/mobilenetv3_family/__init__.py sha256=jLDUjfN5XXBGwUCtnogbzq5MYbjtRX7bZLWWeORIJUY 9186
keras_cv_attention_models/mobilenetv3_family/fbnetv3.py sha256=jS4b0j1930EhOZr-JwKoVmIw8XfbE0d3MXPinacnka8 1973
keras_cv_attention_models/mobilenetv3_family/lcnet.py sha256=SVwBvtvK-ZhUCSIUP5GElZCHkDeaGCYpQrlJW_yS8tU 2068
keras_cv_attention_models/mobilenetv3_family/mobilenetv3.py sha256=YHyiHzwCifk7A-w8k2F_sFRjfgu3l8KlFEkn-1DE20w 9958
keras_cv_attention_models/mobilenetv3_family/tinynet.py sha256=Y52C_Lx7w3sIuVkMRNl-Vuaf4ISRdShWD7ynEnUaGQg 2558
keras_cv_attention_models/mobilevit/__init__.py sha256=ZjLNBH6ijiDIfsHjMfXW6m2yml8I4hbP9QWqRpDL5kg 7033
keras_cv_attention_models/mobilevit/mobilevit.py sha256=drhGkJelfuqkZiJFtQGg5SOElaCyB0rv9ujYeLYQNbk 19732
keras_cv_attention_models/mobilevit/mobilevit_v2.py sha256=Gz2X0EQ8pYUBzRGeuiZoyYXVYBaM585Id50nB8pm67c 3090
keras_cv_attention_models/model_surgery/__init__.py sha256=8ZwBQnfZ3OzlufN9UF4L8Oty6SGwAe0bX6OXOMB9MA0 1358
keras_cv_attention_models/model_surgery/model_surgery.py sha256=DknsJywQsszCuGzy67JM6q8p71-olsikUmMAzmi77hM 53336
keras_cv_attention_models/moganet/__init__.py sha256=TB1CZJt-c4immQJQNUtqWAu3XKtV0b2gt2f9dnqzQPU 2743
keras_cv_attention_models/moganet/moganet.py sha256=edn84t6KJ8lvj4T49XSI8wSueAcKdmxHs6NJ9wZq3bg 8821
keras_cv_attention_models/nat/__init__.py sha256=Dsj-qzQ2Ru0LmUB2U2k6n3DJ2GNT9AwZRXbv_9G6sic 7844
keras_cv_attention_models/nat/dinat.py sha256=VNALK7zhujomb6a_8UAqaAWSl1mfYQxip_mCCJwDabI 3063
keras_cv_attention_models/nat/nat.py sha256=4Y95hF8TjKBEeFGTldmthKqqknlIUqT-dEjmwI5_1J4 16784
keras_cv_attention_models/nfnets/__init__.py sha256=3nBD5sZYi9GFnpokLo6CTS6ZZuXszMtgrqz7SCYDjx0 7230
keras_cv_attention_models/nfnets/nfnets.py sha256=rgpzy-hGZiR4IO5j0IIpwYWHkWLFdMOk0Wmij0ssyFw 16298
keras_cv_attention_models/pvt/__init__.py sha256=EjuyBYJF4l3e_iHFL8YPqR2haMPbQSzBjgvxCa12qIk 3165
keras_cv_attention_models/pvt/pvt.py sha256=UCBOa3xOX7rwHDBdRJp4uSMXssiISB-B1NuoI7Svrcg 11099
keras_cv_attention_models/pytorch_backend/callbacks.py sha256=rdcdx8HoBOLNry8QsRnAj6w-d9Rm5YPV8tz-oEtNV64 1984
keras_cv_attention_models/pytorch_backend/functional.py sha256=-7abaw9WxQYRhtHnwlYcWA4ZePkgPb6ry1JbONA5MuU 19706
keras_cv_attention_models/pytorch_backend/initializers.py sha256=eegE0bhYSM_7Ul9xj65YbUIKvlVEVB6D2jGjeUcuGe0 4462
keras_cv_attention_models/pytorch_backend/layers.py sha256=Sd56cyNOB1qTkWEGjkhM5HFHFu5CO9cFwH9HgvKO_qQ 69035
keras_cv_attention_models/pytorch_backend/losses.py sha256=fx6zBayKroUTBSSRsMMNF6_1guvGV8ViTy-oflea8zk 3827
keras_cv_attention_models/pytorch_backend/metrics.py sha256=x2KkB8nBW7Otr71Xk1N9XUKqcAnftIfrUZm4jMHC_PQ 2447
keras_cv_attention_models/pytorch_backend/models.py sha256=3x2dwZ_bfNuSm8EK9zTf_ZqxnRRBP5oVfqSU5KwJomg 29428
keras_cv_attention_models/pytorch_backend/optimizers.py sha256=Z-enqx-HiiortpqM-tcAnzK8_hl_rJw2JupVIrVmY2U 272
keras_cv_attention_models/pytorch_backend/utils.py sha256=6vv4CyaH4l0gd2Y4JOb1NoMRrebU2moqKhSFS3pGMt0 3568
keras_cv_attention_models/repvit/__init__.py sha256=xG4rj8XXfhW4ppkjYFhUQgPuExiLPQ9sb0YIe2QYN7M 3178
keras_cv_attention_models/repvit/repvit.py sha256=CMczebA1P1R-zP7cLDuXc6ZCxmHdr0t7_u3xTcBSmS4 9099
keras_cv_attention_models/resnest/__init__.py sha256=CVWLPwRZFnT71YhcYrCgJCHFV3MexqLuX7vTeYmzIIA 3820
keras_cv_attention_models/resnest/resnest.py sha256=ZBD3ERrhiLDFywNKNC2V_v4nZZrkomxyFg-gZbUgLQ0 5057
keras_cv_attention_models/resnet_family/__init__.py sha256=fnF3QqTmFJC4bk-Ad2bd9ZRV04cTKkI2k1dtiUgBToM 11201
keras_cv_attention_models/resnet_family/regnet.py sha256=-swdDul0B_cQ9rK-UDDFx1DQxrWiL5Os3ouwmO4tF64 9916
keras_cv_attention_models/resnet_family/resnet_deep.py sha256=USBNkq-pwHmjS9ucgdhSXtDajHlV5_aBscNAUVk4Cjc 2013
keras_cv_attention_models/resnet_family/resnet_quad.py sha256=hbGQ9WLUP0E_ucmRZD8DVjL9owHLHFORvnp1qHcFrG0 6618
keras_cv_attention_models/resnet_family/resnext.py sha256=2FyIwg7E6yqtRbHCu5FqMbyvxxJIWnx-j4Hf6GP-Y0I 3035
keras_cv_attention_models/segment_anything/__init__.py sha256=4r9pWqsp2CIgCg9RGmePKSZGkqqJH_O9sDw9plPv7Lc 3371
keras_cv_attention_models/segment_anything/image_encoders.py sha256=5RNMCRIgA68QWgY63y5rtyHARtJagsSD_7sB3WCI7Ss 4973
keras_cv_attention_models/segment_anything/mask_decoders.py sha256=CTg3bXcQMjq0DzufarMxf040-7tdb3MnBY3xSLZTFDo 8312
keras_cv_attention_models/segment_anything/prompt_encoders.py sha256=f1jRDArU5eBLdu8cDyGbVHjJZfArY_20V8cFjVksmgk 9738
keras_cv_attention_models/segment_anything/sam.py sha256=whT3NDDaW1LWk2jlWjQ4ayVJugzV6J1EEry9siASUY8 9929
keras_cv_attention_models/stable_diffusion/__init__.py sha256=527vux-Jz3TDokKG_dFSCEv74FQEBm0hvzDF255KSN4 3406
keras_cv_attention_models/stable_diffusion/data.py sha256=JnMJ7VzVUIutGSsD3bxzYtCee-q_VINfPTpUyQkRKZQ 7207
keras_cv_attention_models/stable_diffusion/encoder_decoder.py sha256=1M7y16X6I65R38hDikMrpQRcX4uEQFvVdoKUBj3cZT4 7803
keras_cv_attention_models/stable_diffusion/eval_func.py sha256=gYklHBAa5VrEVbjV_ijzaJwQlnhG4vV2IQN1vePQbZ8 7009
keras_cv_attention_models/stable_diffusion/stable_diffusion.py sha256=PKzY88g55FvLb9SpMJ9JZGXyWgOi_OaZcHTl4I65p94 16593
keras_cv_attention_models/stable_diffusion/unet.py sha256=s79y0fQA5pf0_jQLgYbZWU8GND4MR00Ig3ZJhnmbhL4 13559
keras_cv_attention_models/swin_transformer_v2/__init__.py sha256=XO8x1rffilDr_yw2m6D1_rPPZyTES7AdYcWgtukGAVU 14181
keras_cv_attention_models/swin_transformer_v2/swin_transformer_v2.py sha256=G9feUWgT6iA7I67-mTNRzkSWnt-_KPkwJKPEvDeQ05M 30571
keras_cv_attention_models/swin_transformer_v2/swin_transformer_v2_timm.py sha256=XOXyw1xjmZUeFoDLBsxTc4pZ2lQXSYYJVm87PZMUWEM 19027
keras_cv_attention_models/tinyvit/__init__.py sha256=2bKhqSmaVKPpQeU2j-3NGB7BUa4shCEWEwAfJ7wC5HU 3497
keras_cv_attention_models/tinyvit/tinyvit.py sha256=T_rkGoeBHyD1R_qtsRYUl-8W393zEUyMWwUcckZesV4 7952
keras_cv_attention_models/uniformer/__init__.py sha256=cICy8ji5eMnUhw063S1iTpKp3UirKGejXth0tr93Lqw 5701
keras_cv_attention_models/uniformer/uniformer.py sha256=QwA-xz2Lk_bFYxYhi81k9u-0igdrmpczPcD06rtOIEM 14592
keras_cv_attention_models/vanillanet/__init__.py sha256=gIeU5-5ZDTFbxvYOBE_zP6aszt4QHqJ_f5AM_xlUq8A 5292
keras_cv_attention_models/vanillanet/vanillanet.py sha256=9KhIdaURlEU7S-kAh9vSnbD-2SaaOYjQT-5tMgj7nqQ 9295
keras_cv_attention_models/visualizing/__init__.py sha256=Itw4tK7VW1AJV0-ZrFNTNmNAHBSu2hipPqEVia829Lc 7782
keras_cv_attention_models/visualizing/attention_score_maps.py sha256=_Fx1hcjArRY91U3YpYnMbb6zRXokEz479qEksmhJybs 8926
keras_cv_attention_models/visualizing/gradcam_heatmap.py sha256=lSI80HhMFBAHsMl4af8cWbyXfvTLLOoABtiA-jQ8fvY 9883
keras_cv_attention_models/visualizing/visualize_filters.py sha256=PZfEOfR5Y87flY3yAj4qc5DTjM9li48pRfQqlPO_EMY 5166
keras_cv_attention_models/volo/__init__.py sha256=uj6YTnB7ki-5mbwQ-mvLfbfwf09SICKHM3zTdIxm5t0 12831
keras_cv_attention_models/volo/volo.py sha256=yPkyuujMDHNEVs48_ONX29x6nxhCR1vAbZV-LaSPPqk 24680
keras_cv_attention_models/yolor/__init__.py sha256=VuPDAHpREb2OXWn8YTkMNuoEy_BlV3q3AkA0ZVNjOrw 5683
keras_cv_attention_models/yolor/yolor.py sha256=r8nmxpTXbP32A7ojXcIkUhFXwMG97c5L77hTU_5Tjyk 21496
keras_cv_attention_models/yolov7/__init__.py sha256=VNPYUp6g4SdSG2Q8FnCDawA7OwN-06Uo6MfGqq1qOr8 5201
keras_cv_attention_models/yolov7/yolov7.py sha256=6LUHDyEfyV9ta2rJKYbSA26rmnwEruJWjiyPHt445A0 25917
keras_cv_attention_models/yolov8/__init__.py sha256=AZ8g_Mh5HO-OXTB5i8NiwAzO3SWJZFGZIFvBTeXvajs 7630
keras_cv_attention_models/yolov8/train.py sha256=w2sdaLCcV7y4k0QeE57KdYWJQqyUNKvjNiHQ4QEDrM4 7847
keras_cv_attention_models/yolov8/yolo_nas.py sha256=I4sW1FwXIy5irjoG1V_6JRohaRBUfqa92zkcbAACQj0 10449
keras_cv_attention_models/yolov8/yolov8.py sha256=omsdeK1YTdFqO0teaSvcgKT8-TpzYWuaK7AwNFBmz8g 22588
keras_cv_attention_models/yolox/__init__.py sha256=VA8UxuSWdE7Kk7_ek8BizdAZfr95Xnsz6r0F2vRUCwQ 4834
keras_cv_attention_models/yolox/yolox.py sha256=IhHjJg_UNhDb3_1N6PK20Pi8Fa8IhwkK6ktO6bmSShY 17893
kecam-1.4.1.dist-info/LICENSE sha256=xoNoZiRWG6R-VFm8oaL5SezrNbrqlbajBnxQVjpn2Vc 1067
kecam-1.4.1.dist-info/METADATA sha256=GElzEaA9X2h4RC97hoawZfcobZdTO8euwiTJfz3IzWg 188138
kecam-1.4.1.dist-info/WHEEL sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ 92
kecam-1.4.1.dist-info/top_level.txt sha256=-u6ua_pe8di26jFx4ElCRXtfa92_zwLVImK0Yvcj2Jg 32
kecam-1.4.1.dist-info/RECORD

top_level.txt

kecam
keras_cv_attention_models