interactivenet
View on PyPI — Reverse Dependencies (0)
0.2.1 | interactivenet-0.2.1-py3-none-any.whl |
Wheel Details
Project: | interactivenet |
Version: | 0.2.1 |
Filename: | interactivenet-0.2.1-py3-none-any.whl |
Download: | [link] |
Size: | 76422 |
MD5: | 1051be529c82bbb0fb22450319cffe0f |
SHA256: | e9adc5cc630e6ed3842c2810cbdd299cd8f2047680ec3baa7559721a13ab8fc1 |
Uploaded: | 2023-10-26 10:53:52 +0000 |
dist-info
METADATA · WHEEL · RECORD · top_level.txt · entry_points.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | bdist_wheel (0.40.0) |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
interactivenet/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/deploy/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/deploy/download_model.py | sha256=1eOwS9vvkrRIBifp8viQiUsYqJe1mA-uDrSIY03zZIY | 3738 |
interactivenet/deploy/save_model.py | sha256=yDmWYQvcibeSkb5aTBpPhRgbO1_9LjlTg82t340arPQ | 2767 |
interactivenet/experiment_planning/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/experiment_planning/fingerprinting.py | sha256=1pxKl3Rrn-KAhGcMlcBkwiaV6PRNWsCOgKXsBIe9mxM | 17985 |
interactivenet/experiment_planning/generate_dataset_json.py | sha256=1LeYaXnQ1aIGuhS4dJp69htEvZ6X_kLvFlKhmI1uny0 | 7383 |
interactivenet/experiment_planning/mimic_annotations.py | sha256=vYCupKWEo9VvZnhIehGyzuIQnDBhOaLwoctKntiI6-E | 20382 |
interactivenet/experiment_planning/plan_and_process.py | sha256=KVfTVfB-7GU9B1WHSgq0IiiVRiA9NLiMYzzgCu6yxQ8 | 3400 |
interactivenet/experiment_planning/preprocessing.py | sha256=-Gl4D24navicKW_qjaMugEVc0XrSfZAn4zkljLlOgcU | 5521 |
interactivenet/networks/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/networks/unet.py | sha256=5XJB7RJiyJFqxFX2ckVzc4sb43AUbd0VV3Ks4hDC_8U | 9971 |
interactivenet/test/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/test/ensemble.py | sha256=Sjn9IiwhUGZYk1_m04tHnwN6xtL8-6AskJ5UQ53IMZw | 6271 |
interactivenet/test/inference.py | sha256=l2mwLHkhbU-3CXxQxApq2hLCHaOrlLiM8wdKxEFkihw | 10282 |
interactivenet/test/predict.py | sha256=U7zAuf2EM9pn2rCBhOBS-QUr4JL_TkFGRd4rrHmEFwY | 7440 |
interactivenet/test/refinement.py | sha256=QMpgZ5CFXiltIIuVoKlvBYuZtxQNxI3N5TFGdTnmLP4 | 10084 |
interactivenet/test/run.py | sha256=teS0frb1aNMnmXYDZsvt0uA50XnIiQfVGc8E3NpbY10 | 3532 |
interactivenet/training/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/training/postprocessing.py | sha256=y6oDYCKu2bd-YldXoW77pIdJHv650ehFfEK2YmTM_-E | 8620 |
interactivenet/training/run.py | sha256=mMorchf81hxY2TgIDEcf4sYNtzTmMohH4Vd1oDDe9wo | 8784 |
interactivenet/transforms/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/transforms/set_transforms.py | sha256=cMO-jAm9zuaBz5BR_zzCak8c-B_l51QXf4jMdGPGpCo | 7919 |
interactivenet/transforms/transforms.py | sha256=oNCjVgQrlrwdQ1xHntxFWUwpXckyS86Nym6pt6LBVbI | 28667 |
interactivenet/utils/__init__.py | sha256=bHuGfrPcbzzRRVlAstVaYI72D9DAn8VFBri4qOj9f-w | 723 |
interactivenet/utils/callbacks.py | sha256=wqHiwG9tQZR6pY_gLI7g6aIKcsqlMqaoQyJB5-dYlJo | 2223 |
interactivenet/utils/dump.py | sha256=YeyVCt45mJ2CXky_4XzPnt4GBaqBaTDDdLYR2myrKS8 | 1157 |
interactivenet/utils/jsonencoders.py | sha256=ylytnPmkwuHx5taSwlJLuUU9j7wYqDOkKDOI1XLepkk | 1069 |
interactivenet/utils/mlflow.py | sha256=ntjvchFnU8ezlmkPbgenN4iB0W4w8c7_8uSb6BMNAOQ | 1615 |
interactivenet/utils/postprocessing.py | sha256=RuwGKJSDDv07iU-3KcpG1Aes7nPm0flTDnuyRxT4xGs | 1884 |
interactivenet/utils/resample.py | sha256=EQrAHJYPYvOH6M1X430_Yiw9KZEj_a2tRZ-PKLOdeHM | 5118 |
interactivenet/utils/results.py | sha256=KdkT3Ttz3NjOCRq9Su8silbx2PiB3EAJGH9rufPn5HM | 3650 |
interactivenet/utils/statistics.py | sha256=7tDF_Spu0qfeEeuyExJFqP6T2wXjrVceYYKrg4JdE4Y | 6131 |
interactivenet/utils/subtypes.py | sha256=4LKJJvMvRET9GReexSySbDXkFAitgM4_Gy3I7RACLxA | 1952 |
interactivenet/utils/utils.py | sha256=3tEvQVSO_aSYQsF_UGhbr8ZQNaDSmkIh3qGKj25nwKQ | 8523 |
interactivenet/utils/visualize.py | sha256=0oIRt4YQ3kmibiAczzM1p3klNnbABoEvDVFPPUdv-68 | 3577 |
interactivenet-0.2.1.dist-info/LICENSE | sha256=WYmcYJG1QFgu1hfo7qrEkZ3Jhcz8NUWe6XUraZvlIFs | 10172 |
interactivenet-0.2.1.dist-info/METADATA | sha256=g-LQjfOpMLRx1_jPqXh1xCauw_95YkrdcjMxdcXVzac | 1161 |
interactivenet-0.2.1.dist-info/WHEEL | sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 | 92 |
interactivenet-0.2.1.dist-info/entry_points.txt | sha256=qOCGfvXYBTdeWtMLeihWrV7b1iRIl3rc1ePgmsF6QHs | 1103 |
interactivenet-0.2.1.dist-info/top_level.txt | sha256=Zh--Fecun3AtEFLFbPRKOcpqx-zf7Nx7LkWJu2twMpU | 15 |
interactivenet-0.2.1.dist-info/RECORD | — | — |
top_level.txt
interactivenet
entry_points.txt
interactivenet_available_models = interactivenet.deploy.download_model:print_available_pretrained_models
interactivenet_deploy = interactivenet.deploy.save_model:main
interactivenet_download_model = interactivenet.deploy.download_model:download_and_install_model
interactivenet_ensemble = interactivenet.test.ensemble:main
interactivenet_fingerprinting = interactivenet.experiment_planning.fingerprinting:main
interactivenet_generate_dataset_json = interactivenet.experiment_planning.generate_dataset_json:main
interactivenet_inference = interactivenet.test.inference:main
interactivenet_mimic_interactions = interactivenet.experiment_planning.mimic_annotations:main
interactivenet_plan_and_process = interactivenet.experiment_planning.plan_and_process:main
interactivenet_postprocessing = interactivenet.training.postprocessing:main
interactivenet_predict = interactivenet.test.predict:main
interactivenet_preprocessing = interactivenet.experiment_planning.preprocessing:main
interactivenet_test = interactivenet.test.run:main
interactivenet_train = interactivenet.training.run:main