ibmdbpy4nps

View on PyPIReverse Dependencies (0)

0.2.1.9 ibmdbpy4nps-0.2.1.9-py2.py3-none-any.whl

Wheel Details

Project: ibmdbpy4nps
Version: 0.2.1.9
Filename: ibmdbpy4nps-0.2.1.9-py2.py3-none-any.whl
Download: [link]
Size: 164723
MD5: fc867dd142cf62d3ca6a5bb89c0b0047
SHA256: c56deb3c161fd0cef8f0f3b73f7200594392a631359db3540c0768024130b6c4
Uploaded: 2021-07-07 17:49:21 +0000

dist-info

METADATA

Metadata-Version: 2.0
Name: ibmdbpy4nps
Version: 0.2.1.9
Summary: Supports Custom ML/Analytics Execution Inside Netezza
Author: IBM Corp.
Author-Email: vinay.kasireddy[at]ibm.com,toni.bollinger[at]de.ibm.com
License: BSD
Requires-Dist: pandas
Requires-Dist: numpy
Requires-Dist: future
Requires-Dist: six
Requires-Dist: pypyodbc
Requires-Dist: lazy
Requires-Dist: nzpy
Requires-Dist: sphinx; extra == "doc"
Requires-Dist: ipython; extra == "doc"
Requires-Dist: numpydoc; extra == "doc"
Requires-Dist: sphinx-rtd-theme; extra == "doc"
Requires-Dist: JayDeBeApi (==1.*); extra == "jdbc"
Requires-Dist: Jpype1 (==0.6.3); extra == "jdbc"
Requires-Dist: pytest; extra == "test"
Requires-Dist: flaky (==3.4.0); extra == "test"
Provides-Extra: doc
Provides-Extra: jdbc
Provides-Extra: test
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.30.0)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
ibmdbpy4nps/__init__.py sha256=_jbkIMPweAsGG6A1G_nN-5bwVWqqEXGN6-MU5GdEKww 1031
ibmdbpy4nps/aggregation.py sha256=0XZlP1WiGw9462kMppcYznLCY6ZuCCFn9fl6SjVKJxw 6579
ibmdbpy4nps/base.py sha256=QNi6G-P_JbyrE_BbuIu3Rpo7LaRYEe5K8Yq40JA0P-8 95719
ibmdbpy4nps/entropy.py sha256=ibaM8UpAnIttmqDqC3c4UMR98S1e44122JAjqDLyhTU 5097
ibmdbpy4nps/exceptions.py sha256=IZPzGLF9wkMKaJPbqNHYXpd0bA39CUZkIm0udQvnTHk 2411
ibmdbpy4nps/filtering.py sha256=fntBXxKe4BmoK1Hhxb22_Uek5SxCA4gUZiZGtR2sUEE 7902
ibmdbpy4nps/frame.py sha256=l44Xu3vdvDubF3Fyj-Lp6PeYLNM6Y747pHWmMCBgbjA 92955
ibmdbpy4nps/geoFrame.py sha256=HfK0_UfM7nwvMyQAzZtVuPuz2C9SpLta0Lnd-wURuaQ 40440
ibmdbpy4nps/geoSeries.py sha256=oLXtIHXa-GHJMS0371yw4t-JEIZeasl8FETrIcRfyDA 82692
ibmdbpy4nps/indexing.py sha256=-21XbpEeELN0_AkxGCQy40GvVstM_dCrTNn_66dGh_M 5120
ibmdbpy4nps/internals.py sha256=5mkothDQ-TUYsyRLw8LrfWRVJEx_cAeIDNioTp8YNGc 18469
ibmdbpy4nps/series.py sha256=OFm3eRS8rWU3Wqg6wLirPfJTi0UbOIzF_Pf9lmokARg 2407
ibmdbpy4nps/sql.py sha256=Tfrn7iNJ4QC7PbeK1BcYX7lLqygH1gm1IMHGU4Qt-8k 13562
ibmdbpy4nps/statistics.py sha256=JTyznN1ucg1TCwXaN3990DanE0HtJMYTS0OmUmWQLUQ 39386
ibmdbpy4nps/utils.py sha256=kBO17fTUiXubF7FEN6ve4DnJ2SAoSBQe62CK_PVxv_o 11409
ibmdbpy4nps/ae/__init__.py sha256=SwLtXdMvvvAc9QmG6r21zQ_yUV-gdTXMY6F9uLMDVPc 919
ibmdbpy4nps/ae/apply.py sha256=W1OQP0HndXXbmAyWSnHo6a0p69txQ-4lONr2lqslA_s 3879
ibmdbpy4nps/ae/groupedapply.py sha256=sWbZdQ8qCkfWESxyIQZMYLWV3uGaGoXXou_1P2XFurg 6220
ibmdbpy4nps/ae/install.py sha256=MVxpH9vboWUAzsn_50isgm6LdemUHi1utVSbAaZWnJc 1717
ibmdbpy4nps/ae/result_builder.py sha256=7NcpsvooSNH65-0wKqK1Jh2IfOU8uDd5UeLAXOYiwwI 3879
ibmdbpy4nps/ae/shaper.py sha256=28X79GxP-d7FB9BVZ_6K3oOgS4frfnmFsbw5GafXw3k 7024
ibmdbpy4nps/ae/tapply.py sha256=vnxN3g1ps_TnvZSTmf0Bz_R_YZP--aIFCKOX2vBm6jM 3912
ibmdbpy4nps/ae/tapply_class.py sha256=kvk5Ea6JOCVJEDSeP65NDUkP1q5IfMB3L3vkPgR_h4U 6735
ibmdbpy4nps/feature_selection/__init__.py sha256=e0QAXKR7dKa4pQTUHb81C3V-o3qo9XBKEgLrjNrP4aU 991
ibmdbpy4nps/feature_selection/chisquared.py sha256=lVQ0R9fYKASdpAv2bOXbQgEdp6pHkdI8CKboOLrduTo 4714
ibmdbpy4nps/feature_selection/correlation.py sha256=4n3TgvQz4XeoLSrl_dZsw5uEXDk46fpy9DjhZkIt2Pg 7871
ibmdbpy4nps/feature_selection/discretize.py sha256=f2aCxm2J6j_qEUn1IUe6qOPdLnyGlwbTbIDKwTgT2xQ 5694
ibmdbpy4nps/feature_selection/entropy.py sha256=ONRCc2dNiv9hO031q6iyfI-bmGlHoNbQeKpMxipWmPc 5256
ibmdbpy4nps/feature_selection/gain_ratio.py sha256=pzFtoEEDkw3piDGjcJwn9g2tm55fY-gOiS3E53eBJaM 4367
ibmdbpy4nps/feature_selection/gini.py sha256=kR9qYci5Anx9g-OGQe7njNM8mNI-HfHz7t6Mp4Ab9XE 5295
ibmdbpy4nps/feature_selection/info_gain.py sha256=ZYGyi_Lf63vfDegB8kL5LkyiaNwEFJFWqmPvbwwExNs 3473
ibmdbpy4nps/feature_selection/private.py sha256=-tVwJC6bEJnKt_4otcFeGFY0Vqle3a3be1xV4XybzK8 3188
ibmdbpy4nps/feature_selection/symmetric_uncertainty.py sha256=l-ylj6aahFb96GPXzJk18NBKXRy5gUqEYB-drFBYQo8 5415
ibmdbpy4nps/feature_selection/tstats.py sha256=rRESEUpO8gxYMFHV63dGTI5_Wn7-XMbXd7k3R3ddF_M 4577
ibmdbpy4nps/learn/__init__.py sha256=FYbPin0OeyMBS89zkvfB9Gftpr52G7OwS3Vl1WLv9HU 807
ibmdbpy4nps/learn/association_rules.py sha256=aLr4pYd8F9o1w4j_ugO5D-AAy9VSqZ1HQ5Ovs_WbTMQ 26651
ibmdbpy4nps/learn/kmeans.py sha256=ratxb5tSN_Gv03n5cG78a_cLo5t9uHxY1k6ttBUcfeQ 22095
ibmdbpy4nps/learn/naive_bayes.py sha256=5PAti9DSVUqBnSCO9yTP5hZLu5_DIzf6gxYkNi4rMcA 22556
ibmdbpy4nps/sampledata/__init__.py sha256=j5_1ZkfsD8rVl2t9tDQr1MA0tUKQbc9pXKeKpkSuEyE 756
ibmdbpy4nps/sampledata/iris.py sha256=11btDWYrdsV7aJwumrsnPcEjByJHx_6FjvvB5vBYEzc 1110
ibmdbpy4nps/sampledata/iris.txt sha256=5ATaigNI6qeA6WjAeo9NyQ_pDupU3c7rW0RM4MqujTA 4009
ibmdbpy4nps/sampledata/swiss.py sha256=utIY7WxNU1P_7OcTRlatLGUFp-82eELtmtOg5qgGx8w 1296
ibmdbpy4nps/sampledata/swiss.txt sha256=JcQtTKE7Rm9t92FR-t_QwOz2ye5sdomVKO6AMHHmN_U 1805
ibmdbpy4nps/sampledata/titanic.py sha256=E0EV-ULInlExhOca8B-l_op2AcOKvTuP550mf7Hz3d4 1434
ibmdbpy4nps/sampledata/titanic.txt sha256=icIcn4S4p1xT6cP5KLbQl7qnDK97I5JYqPDIcdfb9J0 68594
ibmdbpy4nps-0.2.1.9.dist-info/DESCRIPTION.rst sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ibmdbpy4nps-0.2.1.9.dist-info/METADATA sha256=qkzorufNhiCnr_V0JAPGe0IEGYZxNfuxC2fKXmJO98k 2440
ibmdbpy4nps-0.2.1.9.dist-info/RECORD
ibmdbpy4nps-0.2.1.9.dist-info/WHEEL sha256=BTHHj6QhsHpWhRUrxioIvCAgjx81u-a8gkPTO6bi_A0 116
ibmdbpy4nps-0.2.1.9.dist-info/metadata.json sha256=8QP8kevwYi4XGgYY7RkDH1P41tdgVMf62GzcbsWs604 757
ibmdbpy4nps-0.2.1.9.dist-info/top_level.txt sha256=1Yqq6W-hZva5T0vEDFPhGBs-SfQzUkUkAX3e61f72TY 12

top_level.txt

ibmdbpy4nps