htsmodels

View on PyPIReverse Dependencies (0)

0.3.28 htsmodels-0.3.28-py3-none-any.whl

Wheel Details

Project: htsmodels
Version: 0.3.28
Filename: htsmodels-0.3.28-py3-none-any.whl
Download: [link]
Size: 28242
MD5: 5c02aef474f3bc6ce1fe667624c4c015
SHA256: b9168a10798048a0d08e0749f88db636e1abedf9e95a7f5e8e0c0316a21c509f
Uploaded: 2023-12-19 12:56:51 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: htsmodels
Version: 0.3.28
Summary: Forecasting algorithms for hierarchical time series
Author: Luis Roque
Author-Email: <roque0luis[at]gmail.com>
Keywords: python,time series,hierarchical,forecasting,htsmodels,machine learning
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Intended Audience :: Science/Research
Classifier: Topic :: Scientific/Engineering
Classifier: Programming Language :: Python :: 3
Classifier: Operating System :: OS Independent
Requires-Dist: setuptools (~=58.0.4)
Requires-Dist: tsaugmentation (~=0.5.26)
Requires-Dist: pandas (~=1.2.5)
Requires-Dist: rpy2 (~=3.4.5)
Requires-Dist: numpy (~=1.23.5)
Requires-Dist: gluonts (~=0.11.2)
Requires-Dist: tqdm (~=4.62.3)
Requires-Dist: scikit-learn (~=1.0.1)
Requires-Dist: mxnet (~=1.8.0)
Requires-Dist: gpytorch (~=1.9.0)
Requires-Dist: torch (~=2.0.1)
Description-Content-Type: text/markdown
[Description omitted; length: 82 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
htsmodels/__init__.py sha256=TpjZaGga0Xet2k9kg_q13DlNJfRFhmwzTNYf6pZkv7I 312
htsmodels/Tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
htsmodels/Tests/test_deepar_missing_values.py sha256=0ahTsNjgyx2tJ5ddyLFrrHR6M2oBIZf9ZKb4vJc05P0 1073
htsmodels/Tests/test_deepar_results.py sha256=RZHzsrYSz7acrKosc0gioXIRP2_YbC2Z60IKxo2TvrI 2714
htsmodels/Tests/test_deepvar_results.py sha256=K5BM_hKCt3r0zzWCqm7J-UXX6FVbZM117LX4QLANURY 2602
htsmodels/Tests/test_mint_missing_values.py sha256=snwfz86zDFoS1khaskJkU2txL1WoJ5W8lrUz33GHvfg 1097
htsmodels/Tests/test_mint_missing_values_tourism.py sha256=efEfiEl7HSM5W8E3o10HH7pArkRcCqMDW1S7mrF-YhA 1101
htsmodels/Tests/test_mint_results_m5.py sha256=Q3N4iL1CYEIIlMTEZtucJM56US7U71x0ljFv3uaLPSA 479
htsmodels/Tests/test_mint_results_police.py sha256=_M3k39vgsoLwdOT-pSz-MJo5BAu9AMl3zWkim718u8w 510
htsmodels/Tests/test_mint_results_store_prison.py sha256=wiedjrAo8jHyTAWpOqbaji13Aladkr370nHufQy02Aw 2285
htsmodels/Tests/test_mint_results_tourism.py sha256=6pz8WdgAuNNuBhYLXKW6QIA3auNW3XZLxgJV0e06d9g 851
htsmodels/Tests/test_standard_gp_prison.py sha256=u1n6IsjIMyY8HxnSHdLdtUvnLJYW9YbZQvB0vGxeJlQ 2645
htsmodels/Tests/test_tft_results.py sha256=LACfuibxwn-JUJSe_sifnUiJnHNcrksiXxtNxpeBDTs 1159
htsmodels/models/__init__.py sha256=_POagvU59H_35yPU5EAZ3Szq5myQ3KOuP-gMDHjcwzU 75
htsmodels/models/gluon_models.py sha256=qwudEXpuzqguZ3EHO5hvJ0qVaJ0G7FzZtclaSaRLZfA 27190
htsmodels/models/gp.py sha256=Ut1wBOissmnlXDaWmPAJ6ihkLxdR9Cq0kv7AJnD5xUI 434
htsmodels/models/mean_functions.py sha256=oGioQSC2UF9Bip4GUDyi1_PsCT4H7Yz-WuJM-gST8hE 1696
htsmodels/models/mint.py sha256=icPO-iGuJO1ScsSNrTHt8DTcYGo9G3ZlA23eZgxZCaE 14171
htsmodels/models/standard_gp.py sha256=RqhSwAnMHYXEKfjDz-MUbT4C5McafpvzozFPY1Jbh5c 12204
htsmodels/preprocessing/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
htsmodels/preprocessing/subsampled_dataset.py sha256=awT6JyorO-JcymJP8JOriDxbWM6dJdmO9mJoY8gpuo4 1820
htsmodels/results/__init__.py sha256=5AyWIrOA3tmpJhqgVyI025aYoe0un6AP-pp7JnUlArY 33
htsmodels/results/calculate_metrics.py sha256=BvF9YK2gxlFy6nb1P_Pt4u2rFzAT1NGWqRG6iPb13us 14895
htsmodels/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
htsmodels/utils/logger.py sha256=5SJVEFQswSrjO8y9Dvv-sc7J4A3Sk18TD-wv4QFDq74 1156
htsmodels-0.3.28.dist-info/METADATA sha256=L7omNZkNZRpb4zN-IFQ-lk1UD_8d1uAYknAQsiJ3RVc 1015
htsmodels-0.3.28.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
htsmodels-0.3.28.dist-info/top_level.txt sha256=PZokFDlLIiy0TN9e3g7ki_hAHT6bgEQMh1zleLuqREM 10
htsmodels-0.3.28.dist-info/RECORD

top_level.txt

htsmodels