gtech-optimus

View on PyPIReverse Dependencies (0)

0.0.7 gtech_optimus-0.0.7-py3-none-any.whl

Wheel Details

Project: gtech-optimus
Version: 0.0.7
Filename: gtech_optimus-0.0.7-py3-none-any.whl
Download: [link]
Size: 55522
MD5: e6e936d672a1b02f0a84d84a5cdaa1da
SHA256: e85d21fe57375dcdc5b88c6e99216f20e7bcfad867eebaa3f12c1407585f7531
Uploaded: 2024-02-19 13:42:53 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: gtech-optimus
Version: 0.0.7
Summary: Optimus library for real-time marketing personalization using RL.
Author: Google gTech Ads EMEA Privacy Data Science Team
Home-Page: https://github.com/google-marketing-solutions/optimus
License: MIT
Keywords: 1pd privacy reinforcement learning optimization personalization
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.10
Requires-Dist: jax (>=0.4.20)
Requires-Dist: ml-collections (>=0.1.1)
Requires-Dist: tensorflow (>=2.11.0)
Requires-Dist: flax (>=0.7.5)
Requires-Dist: numpy (==1.24.1)
Requires-Dist: optax (>=0.1.7)
Requires-Dist: tqdm (>=4.66.1)
Requires-Dist: orbax-checkpoint (==0.4.2)
Requires-Dist: portpicker (>=1.5.2)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 24388 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
optimus/__init__.py sha256=ortFoSp2yE1_7Vr1W8kiDJsBt5b9R7jSSferf2ij2sY 634
optimus/training_setup.py sha256=w2eR7qynnb90AjNslLGFY3KH_e-G_1zOnmpbYAL34Nc 14067
optimus/actions_lib/__init__.py sha256=-7JS1gK-y5let8XQVJ0piqr5DakoJqkSlh5VPD4kE6s 538
optimus/actions_lib/actions.py sha256=M4-pgU4Z_pzm52B129aiwYj8dFtnTyePmMVrFgqrxSI 2358
optimus/actions_lib/base_actions.py sha256=3V_wlNwbieio7EcS3IcNNAQm7XhowRN2bmYLiRb8k-A 1219
optimus/agent_lib/__init__.py sha256=-7JS1gK-y5let8XQVJ0piqr5DakoJqkSlh5VPD4kE6s 538
optimus/agent_lib/agents.py sha256=QCZZY9RmsuhGg33qA_0-JurEDzHFbLGTEI7Ruc5Nsk4 2317
optimus/agent_lib/base_agent.py sha256=EDtWqer7ufqLkcjGo7C1dAE4bk0613ZnJE6uZwyaBE4 9491
optimus/agent_lib/tabnet.py sha256=XaDJ7VeqVD4kVJwMCCKoFfvD7x13zWGiYNjNrPZNq94 49004
optimus/data_pipeline_lib/__init__.py sha256=-7JS1gK-y5let8XQVJ0piqr5DakoJqkSlh5VPD4kE6s 538
optimus/data_pipeline_lib/base_data_pipeline.py sha256=EzyLDAQcFqf28a5krYIwEjYDAJmxzpRAWazleT4JQF8 10618
optimus/data_pipeline_lib/data_pipelines.py sha256=zNUWvqfh98Xn9sKQJxn9GhvK7oYj2dvbipLSvx7ax98 2685
optimus/preprocessing_lib/__init__.py sha256=-7JS1gK-y5let8XQVJ0piqr5DakoJqkSlh5VPD4kE6s 538
optimus/preprocessing_lib/base_preprocessing.py sha256=ieuRntTEQsjqYEuzHGje1RSVrGQeXKgKnfvsdmkzPWY 21771
optimus/reward_lib/__init__.py sha256=-7JS1gK-y5let8XQVJ0piqr5DakoJqkSlh5VPD4kE6s 538
optimus/reward_lib/base_reward.py sha256=dXd1OXq-PwhjMuZQdHkTaKk3WGYoSD6t5PH-sl2b7Cs 2222
optimus/reward_lib/rewards.py sha256=zDQfDuRQuorep5cebXLsyB2twF7ednp3MJtPKi5Yty4 2311
optimus/trainer_lib/__init__.py sha256=-7JS1gK-y5let8XQVJ0piqr5DakoJqkSlh5VPD4kE6s 538
optimus/trainer_lib/base_trainer.py sha256=CAqkCss8k7S7rftqx_MwUv7CXezB1bHW8CxdZdKYwog 36283
optimus/trainer_lib/losses.py sha256=P1OIL8AV0h-aar1y4bZvoTeS5OHJUCGSnoM_mG1MVHA 9174
optimus/trainer_lib/optimizers.py sha256=1fs-85ZC0Rcm-ErP42akWlJaMQ2b0O6TJTLXIOajDOw 1590
optimus/trainer_lib/schedules.py sha256=-90tfVo4S73H3N-XSF6MLdENrgajfb55F8BYiVbwL70 5227
optimus/trainer_lib/trainers.py sha256=IW6-vdH-1JEl-aU_l6qyZ4xVGi7wvDGqjti_hNf0Ess 2346
gtech_optimus-0.0.7.dist-info/LICENSE sha256=bDzv8wQDJy743rZwkZospLuYYgKK4DvMMEfva_9qSfM 1066
gtech_optimus-0.0.7.dist-info/METADATA sha256=nmC-CKy5D1Sio4QfRVXDAfvrncPKZDpgZr4ja7CyQ6I 25510
gtech_optimus-0.0.7.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
gtech_optimus-0.0.7.dist-info/top_level.txt sha256=Vht4KNRU-4OXiwPVFgeSV2CyMmbLsDdlRZQzQJbPg5s 8
gtech_optimus-0.0.7.dist-info/RECORD

top_level.txt

optimus