gft-cpu

View on PyPIReverse Dependencies (0)

0.1.5 gft_cpu-0.1.5-py3-none-any.whl

Wheel Details

Project: gft-cpu
Version: 0.1.5
Filename: gft_cpu-0.1.5-py3-none-any.whl
Download: [link]
Size: 263497
MD5: aa81b493279464d86665410a9f62761b
SHA256: d3e83178246bdbc921932fb16f2a876467f72e3755c92a717a4551b759e95c51
Uploaded: 2022-06-19 18:15:15 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: gft-cpu
Version: 0.1.5
Summary: GFT (general fine-tuning) A Little Language for Deepnets: 1-line programs for fine-tuning, inference and more
Author: GFT Authors
Author-Email: kenneth.ward.church[at]gmail.com
Home-Page: https://github.com/kwchurch/gft
License: Apache 2.0
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.6
Requires-Dist: pyparsing (==2.4.7)
Requires-Dist: multiprocess (==0.70.8)
Requires-Dist: matplotlib
Requires-Dist: requests
Requires-Dist: scipy
Requires-Dist: wheel
Requires-Dist: accelerate
Requires-Dist: argparse
Requires-Dist: datasets
Requires-Dist: numpy (==1.21)
Requires-Dist: seqeval
Requires-Dist: sklearn
Requires-Dist: torch
Requires-Dist: tqdm
Requires-Dist: tokenizers
Requires-Dist: transformers
Requires-Dist: typing
Requires-Dist: paddlenlp
Requires-Dist: paddlepaddle
Requires-Dist: soundfile
Requires-Dist: librosa
Requires-Dist: jiwer
Requires-Dist: sentencepiece
Requires-Dist: torchaudio
Requires-Dist: paddlehub
Requires-Dist: pypinyin
Requires-Dist: LAC
Requires-Dist: py7zr
Requires-Dist: conllu
Requires-Dist: timm
Requires-Dist: spacy
Requires-Dist: ftfy
Requires-Dist: yacs
Requires-Dist: importlib-metadata
Requires-Dist: apache-beam
Requires-Dist: huggingface-hub
Requires-Dist: sentence-transformers
Description-Content-Type: text/plain
[Description omitted; length: 112 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
gft/__init__.py sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs 1
gft/gft_cat_data.py sha256=vp3Lhqt1t7QVVEN-fvTFPnqAHwK5j-4yKH07XTOvQ3k 3273
gft/gft_eval.py sha256=gld0v9sn48ft_4oThAdiybiLUwmP_nS7W6nJLiUvSA8 5488
gft/gft_fit.py sha256=on0Ax4b4W_xODdGn9KJ7hwBRod51RdMQ7bnGvGTXow0 4204
gft/gft_predict.py sha256=SAWSDrMPYvsVHuRkJGq6RSgRFWwzLgE_C6b0yjMo6iQ 3399
gft/gft_summary.py sha256=0A-HHv_BylZvHZD2RJbAvnNnYlDkf_yipJ4uXtvnnc0 3026
gft/gft_internals/__init__.py sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs 1
gft/gft_internals/eval_for_classify.py sha256=8YNlrYgvVazEjEpjRu6Xp7acFLRmX5zUbUbP_d3FZpE 999
gft/gft_internals/eval_for_classify_classic.py sha256=K4wRYzIsilE3OFddvi-qdyn_zFnVrql0YIX3VFeoc48 9216
gft/gft_internals/eval_for_classify_hf.py sha256=DBcqGcAQCmR941_9jqON9XA8yLmLzQdAOqSaPTa_8Sw 13400
gft/gft_internals/eval_for_classify_pd.py sha256=bA4GV6STo7UWvWgjm08Jo7Y7KRmrjj9m72Pc_Sn_XU4 19384
gft/gft_internals/eval_for_classify_spans.py sha256=86raSNlhuALAhiC5xfhjILjeFwzDp52bENxIzulqHy8 817
gft/gft_internals/eval_for_classify_spans_hf.py sha256=5UHU6GXRvbm6D4kkH3MnA81ls61FDQx9OJ3v6SXpp2M 46313
gft/gft_internals/eval_for_classify_spans_pd.py sha256=7jiaVGgxSDdTUnsyLhN64fPgRTIoybPKpR73w3U9Fvg 33577
gft/gft_internals/eval_for_classify_tokens.py sha256=gGnRNQZkHX638HVPnJRdJYH1vZxdnqSFFyZk31thi4w 27619
gft/gft_internals/eval_for_ctc.py sha256=hVz9u6YtDuggOFCterQdGCO4gYe9yzo_VJrxfu4FvYw 37521
gft/gft_internals/eval_for_regress.py sha256=Hkj3tY1NaD7b6pwNlzGaHwbq9SAZePfcp9L-OsMCbHM 726
gft/gft_internals/eval_for_regress_hf.py sha256=oQCEL69ai1EoED1XzBiVInEjf5-rCyn7JZUiUfqWls4 11171
gft/gft_internals/eval_for_regress_pd.py sha256=LaTmXeLvSWMjB8mtweq6nMQt9fXHEYDQojjTiZwQjvw 19447
gft/gft_internals/fit_for_classify.py sha256=fHMisUjH3LEORsJCqmAojOuzJk-qidMPEvEeOmOzD9o 951
gft/gft_internals/fit_for_classify_classic.py sha256=10Oy9KLvsoIkNSpumpxVa0cW9iTcJpBUYbm3P3N6uIc 9215
gft/gft_internals/fit_for_classify_hf.py sha256=DX4DkaZsjpuf-x4QjEQKRiNe14P-mpobcO5Hiye0HYg 13663
gft/gft_internals/fit_for_classify_pd.py sha256=8V5r54qQAG1zTbJyV6XAUQNTONsoBoIsY0srMqVAb7U 20798
gft/gft_internals/fit_for_classify_spans.py sha256=ZDvXZeypOL97v9EuO6_c2CeuhlzlUEeJk7Xp_Ffj3sg 787
gft/gft_internals/fit_for_classify_spans_hf.py sha256=ys2NLxu0X_e_iGTRGs8jCw8isEkKL0BV6rE1N6G74q8 33434
gft/gft_internals/fit_for_classify_spans_pd.py sha256=xB7g3QFtl3pEFcPDROPx9bdOjaRLUgkj4kZ-azfe554 33440
gft/gft_internals/fit_for_classify_tokens.py sha256=U5UQlGEgk6ADfUv1AyiTenMTVPtGCBbrua1hdq1Jdg8 26797
gft/gft_internals/fit_for_ctc.py sha256=WE3cmrcrD6f3G1Rjrbku2XYZiT18PJO2AEyVi_XAMV0 37564
gft/gft_internals/fit_for_regress.py sha256=szpxFFTHl6VM6xuNe7McgcRVYiGdTzUQyqqlxKXqf1Q 728
gft/gft_internals/fit_for_regress_hf.py sha256=t6Rn3rEVMhcrUiS2UkVyX98PoOf9QtAojaJH2g6pmRc 10876
gft/gft_internals/fit_for_regress_pd.py sha256=0K9UAXMa4xl9syTgrrzOdV-iiphxfbxWW1Ec5fpXwv4 19595
gft/gft_internals/gft_predict_hf.py sha256=fP24tu80GHKFm-2D3p7Nne7kPVgGOuekYi4wQmxvroQ 12126
gft/gft_internals/gft_predict_pd.py sha256=urJoj-sYW1VMjNMGMPLHsBKc0dTMiEVKRJzpF_YlG0k 15500
gft/gft_internals/gft_summary_hf.py sha256=cNVLzfRQGP2RfIai9v9Pn5DWY0oXEydULwiOnAecM3Y 10860
gft/gft_internals/gft_summary_pd.py sha256=CGCicq4_btC_ymdLWK7NHeCM-2jAOGtGSDM2sjy1ZpY 10998
gft/gft_internals/gft_util.py sha256=XuTFHVRYlN0_rDziOSxGXhCHcKX9TseiY8SQEWd6kl0 10012
gft/gft_internals/loadable_models.py sha256=kg5d1UzZxI7sIuSlNv0vmByNTy7AUeAYSDaufCgy4FQ 548
gft/gft_internals/my_auto_model_hf.py sha256=zS3mzJuuD45xqD4d-1wrElQL-PQEZVL6hxexsk0eMt4 19787
gft/gft_internals/my_auto_model_pd.py sha256=1UX09wt46fqSJDtvkF0bB5y1_GdKTac2umcueqlSpak 10580
gft/gft_internals/my_auto_model_util.py sha256=9me58F1omxgIZJTCsJNDotq6PjIyEZ09VoMxQIfY4jU 5385
gft/gft_internals/my_datasets.py sha256=PVm-fFPdgMOn8t841SfUV0Pa-O69wRN1wEEE60bIHAo 9557
gft/gft_internals/my_task.py sha256=rFBOH9EyTeF3Od0gCPDAEQbFRwbs68tQgZs9mt2SYt0 6816
gft/gft_internals/paddle_dataset_zoo.py sha256=OMdULIU-y082lvCo_CUjySOcrQhROq-g-kIT-31I_x0 8416
gft/gft_internals/paddle_model_zoo.py sha256=f0WxjWgRUTS7ie2p_hVexJer4YhSPocxlj7F-oeUrsU 29472
gft/gft_internals/parse_args.py sha256=YtirGf4I8RHJYhF-oEto6M_w1JA7q7r1dJkSXtc7EUo 19114
gft/gft_internals/parse_eqn.py sha256=XIwCwSa7pz1twuKf_iPCjPKC9Wp7-XT4kO2mtUQw-Qw 7737
gft/gft_internals/predict_speech.py sha256=2Q36FQCrgdJq_b8smHnycnYJ1CR4CRVJsBqFe-eSPaI 1175
gft/gft_internals/run_qa.py sha256=9Swf2F1kaVTdsDQ42hMIkZb26YsabgwNngp62I4Bavg 30376
gft/gft_internals/trainer_qa.py sha256=zWgY_kybEaCa2u8hDfvLqYxrP0y8BGYitFnlpMUZcF0 4741
gft/gft_internals/utils_qa.py sha256=T-gotA9q-JhJN8Ky_0b1ReJDMAJCLt8qBiaHOeKf3LM 22662
gft/gft_internals/huggingface_hub/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
gft/gft_internals/huggingface_hub/has_tokenizer.py sha256=LDYSzPek92efL5Kc-eZtOkvWfvvcIq3gEqrNxr8JYow 361
gft/gft_internals/huggingface_hub/list_adapters.py sha256=nP-lD0uDBgKDxPMsMNTUKdQeZ5hrxMLZfqULlpkXevc 537
gft/gft_internals/huggingface_hub/list_huggingface_datasets.py sha256=p9yTTI60U5kf1u7JgB1oAhoB2ja4hhUd4l1KyTlbUQg 490
gft/gft_internals/huggingface_hub/list_huggingface_datasets_and_models.py sha256=mkxBg4EBx3szTpQnKk2GvCvzr8W9WFy2kLvsnAJo_Kk 410
gft/gft_internals/huggingface_hub/list_huggingface_models.py sha256=TOxqoRmwSr93psq7bWG8HB5AGmivJzSnEDih3H3zY0A 472
gft/gft_internals/huggingface_hub/models_for_dataset.py sha256=m-syemhZ6wxq2lRVTcBgiNrZtpGA6UM4Dlkmfk-fmRo 496
gft/gft_internals/prepare_datasets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
gft/gft_internals/prepare_datasets/dataset_to_case_labels.py sha256=iSMspI7pVGwf_oST7MB-9fhLSRWY9gOH2Ajb0cMFcZ4 2916
gft/gft_internals/prepare_datasets/dataset_to_text.py sha256=TIQtfdUl3g2y_ze7XnL5fPEjO-jh7TUyYLaPq5EJiNQ 896
gft/gft_internals/sklearn_metrics/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
gft/gft_internals/sklearn_metrics/accuracy_score.py sha256=_8_jcOHAvUn8MC2eomvKwXw5cOeTLt58f1iP4Tv7_Ek 2560
gft/gft_internals/sklearn_metrics/adjusted_mutual_info_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/adjusted_rand_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/average_precision_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/balanced_accuracy_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/brier_score_loss.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/completeness_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/explained_variance_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/fowlkes_mallows_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/homogeneity_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/jaccard_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/log_loss.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/max_error.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/mean_absolute_error.py sha256=7Meg8qY56Psi41xnIcz0iJSUAzYLHVYy8QZ9zPRIw20 1919
gft/gft_internals/sklearn_metrics/mean_absolute_percentage_error.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/mean_gamma_deviance.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/mean_poisson_deviance.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/mean_squared_error.py sha256=Fs3XvdQi666Uy8cPQKRd7gibF944_CXgn9K4RxmOTuc 2137
gft/gft_internals/sklearn_metrics/mean_squared_log_error.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/median_absolute_error.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/multiclass_glue.py sha256=kY5kRvupQaDDeRMbCYS5A_jBTR6212olJVBLUn2R50M 5793
gft/gft_internals/sklearn_metrics/mutual_info_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/normalized_mutual_info_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/r2_score.py sha256=zvWQhWRnmEaYsiT1IV-8CNe9_ILqwfRH-US-MeG3OK8 2087
gft/gft_internals/sklearn_metrics/rand_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/recall_score.py sha256=wcMGWMuLGhjsCNJXV0zIilcTQFOM1bPiD-ZDkxKgy8s 2697
gft/gft_internals/sklearn_metrics/roc_auc_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/top_k_accuracy_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/v_measure_score.py sha256=FXBvHnQicE403wI3OEYcgNfutibQWtEJDKlqoa5CNRQ 5500
gft/gft_internals/sklearn_metrics/weighted_glue.py sha256=kY5kRvupQaDDeRMbCYS5A_jBTR6212olJVBLUn2R50M 5793
gft_cpu-0.1.5.dist-info/LICENSE sha256=_ATKzWw04Nu6f2e6Slf30rOB0Rv6K8BcGv0fidsGIVc 11420
gft_cpu-0.1.5.dist-info/METADATA sha256=72OjUZkFQixzNsKukvkm137Kalyc_3lvNkQi0UqUsZI 1727
gft_cpu-0.1.5.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
gft_cpu-0.1.5.dist-info/entry_points.txt sha256=Dy3CGeiiGghXfc8p9tBmiQstGh287zFURk78qhbOAY8 182
gft_cpu-0.1.5.dist-info/top_level.txt sha256=hnfltGRAk2-VtLCuK_5cs-AdM6v92XwpX5pOpFcFN8E 4
gft_cpu-0.1.5.dist-info/RECORD

top_level.txt

gft

entry_points.txt

gft_cat_data = gft.gft_cat_data:main
gft_eval = gft.gft_eval:main
gft_fit = gft.gft_fit:main
gft_predict = gft.gft_predict:main
gft_summary = gft.gft_summary:main